Suppr超能文献

通过划分结构对贝叶斯疾病地图中的分类协变量进行建模。

Modelling categorical covariates in Bayesian disease mapping by partition structures.

作者信息

Giudici P, Knorr-Held L, Rasser G

机构信息

Dipartimento di Economia Politica e Metodi Quantitativi, University of Pavia, Via San Felice 5, I-27100 Pavia, Italy.

出版信息

Stat Med. 2000;19(17-18):2579-93. doi: 10.1002/1097-0258(20000915/30)19:17/18<2579::aid-sim589>3.0.co;2-g.

Abstract

We consider the problem of mapping the risk from a disease using a series of regional counts of observed and expected cases, and information on potential risk factors. To analyse this problem from a Bayesian viewpoint, we propose a methodology which extends a spatial partition model by including categorical covariate information. Such an extension allows detection of clusters in the residual variation, reflecting further, possibly unobserved, covariates. The methodology is implemented by means of reversible jump Markov chain Monte Carlo sampling. An application is presented in order to illustrate and compare our proposed extensions with a purely spatial partition model. Here we analyse a well-known data set on lip cancer incidence in Scotland.

摘要

我们考虑利用一系列观察到的和预期病例的区域计数以及潜在风险因素的信息来绘制疾病风险的问题。为了从贝叶斯观点分析这个问题,我们提出了一种方法,该方法通过纳入分类协变量信息扩展了空间划分模型。这种扩展允许在残差变化中检测聚类,反映进一步的、可能未观察到的协变量。该方法通过可逆跳跃马尔可夫链蒙特卡罗抽样来实现。给出了一个应用实例,以说明并将我们提出的扩展与纯空间划分模型进行比较。在这里,我们分析了一个关于苏格兰唇癌发病率的著名数据集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验