Suppr超能文献

大肠杆菌中葡萄糖磷酸转移酶、甘露糖磷酸转移酶和葡萄糖激酶缺陷型突变体中D-葡萄糖的磷酸化作用

Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase.

作者信息

Curtis S J, Epstein W

出版信息

J Bacteriol. 1975 Jun;122(3):1189-99. doi: 10.1128/jb.122.3.1189-1199.1975.

Abstract

Genetic studies show that Escherichia coli has three enzymes capable of phosphorylating glucose: soluble adenosine 5'-triphosphate-dependent glucokinase, which plays only a minor role in glucose metabolism; an enzyme II, called glucosephosphotransferase, with high specificity for the D-glucose configuration; and another enzyme II, called mannosephosphotransferase, with broader specificity. The former enzyme II is active on glucose and methyl-alpha-glucopyranoside, whereas the latter is active on D-glucose, D-mannose, 2-deoxy-D-glucose, D-glucosamine, and D-mannosamine. Mutations leading to loss of glucosephosphotransferase activity and designated by the symbol gpt are between the purB and pyrC markers in a locus previously called cat. The locus of mutations to loss of mannosephosphotransferase, mpt, is between the eda and fadD genes. Mutations to loss of glucokinase, glk, are between the ptsI and dsd genes.

摘要

遗传学研究表明,大肠杆菌有三种能够磷酸化葡萄糖的酶:可溶性腺苷5'-三磷酸依赖性葡萄糖激酶,它在葡萄糖代谢中仅起次要作用;一种酶II,称为葡萄糖磷酸转移酶,对D-葡萄糖构型具有高特异性;以及另一种酶II,称为甘露糖磷酸转移酶,具有更广泛的特异性。前一种酶II对葡萄糖和α-甲基葡萄糖苷有活性,而后者对D-葡萄糖、D-甘露糖、2-脱氧-D-葡萄糖、D-葡萄糖胺和D-甘露糖胺有活性。导致葡萄糖磷酸转移酶活性丧失且由符号gpt表示的突变位于先前称为cat的基因座中的purB和pyrC标记之间。导致甘露糖磷酸转移酶丧失的突变位点mpt位于eda和fadD基因之间。导致葡萄糖激酶丧失的突变glk位于ptsI和dsd基因之间。

相似文献

3
Regulation of fructose uptake by glucose in Escherichia coli.
J Gen Microbiol. 1975 Sep;90(1):157-68. doi: 10.1099/00221287-90-1-157.
5
Genetic analysis of carbohydrate transport-deficient mutants of Salmonella typhimurium.
J Bacteriol. 1969 Jan;97(1):250-5. doi: 10.1128/jb.97.1.250-255.1969.
6
Carbohydrate accumulation and metabolism in Escherichia coli. I. Description of pleiotropic mutants.
J Mol Biol. 1968 Feb 28;32(1):59-66. doi: 10.1016/0022-2836(68)90145-9.
7
PfkA locus of Escherichia coli.
J Bacteriol. 1975 Jun;122(3):1162-71. doi: 10.1128/jb.122.3.1162-1171.1975.
10
Mutations affecting the dissimilation of mannitol by Escherichia coli K-12.
J Bacteriol. 1972 Aug;111(2):566-74. doi: 10.1128/jb.111.2.566-574.1972.

引用本文的文献

1
Tailoring Escherichia coli BL21 (DE3) for preferential xylose utilization via metabolic and regulatory engineering.
Appl Microbiol Biotechnol. 2025 Feb 28;109(1):54. doi: 10.1007/s00253-025-13430-4.
2
Characterizing lysine acetylation of glucokinase.
Protein Sci. 2024 Jan;33(1):e4845. doi: 10.1002/pro.4845.
4
The novel chloroplast glucose transporter pGlcT2 affects adaptation to extended light periods.
J Biol Chem. 2023 Jun;299(6):104741. doi: 10.1016/j.jbc.2023.104741. Epub 2023 Apr 23.
5
Glucose Transport through -Acetylgalactosamine Phosphotransferase System in C Strain.
J Microbiol Biotechnol. 2022 Aug 28;32(8):1047-1053. doi: 10.4014/jmb.2205.05059. Epub 2022 Jul 4.
6
Evolving a New Efficient Mode of Fructose Utilization for Improved Bioproduction in .
Front Bioeng Biotechnol. 2021 May 28;9:669093. doi: 10.3389/fbioe.2021.669093. eCollection 2021.
7
Conversion of glucose-xylose mixtures to pyruvate using a consortium of metabolically engineered .
Eng Life Sci. 2017 Oct 16;18(1):40-47. doi: 10.1002/elsc.201700109. eCollection 2018 Jan.
10
ATP- and Polyphosphate-Dependent Glucokinases from Aerobic Methanotrophs.
Microorganisms. 2019 Feb 14;7(2):52. doi: 10.3390/microorganisms7020052.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
4
A NEW METHOD FOR THE SELECTION OF MUTANTS OF ESCHERICHIA COLI FORMING BETA-GALACTOSIDASE CONSTITUTIVELY.
Biochim Biophys Acta. 1964 Sep 4;90:609-10. doi: 10.1016/0304-4165(64)90241-7.
5
THE UTILIZATION OF GLUCOSE 6-PHOSPHATE BY GLUCOKINASELESS AND WILD-TYPE STRAINS OF ESCHERICHIA COLI.
Proc Natl Acad Sci U S A. 1964 Nov;52(5):1207-13. doi: 10.1073/pnas.52.5.1207.
6
PHOSPHATE BOUND TO HISTIDINE IN A PROTEIN AS AN INTERMEDIATE IN A NOVEL PHOSPHO-TRANSFERASE SYSTEM.
Proc Natl Acad Sci U S A. 1964 Oct;52(4):1067-74. doi: 10.1073/pnas.52.4.1067.
8
THE GLUCOSE PERMEASE SYSTEM IN BACTERIA.
Biochim Biophys Acta. 1964 Mar 30;79:337-50.
9
STUDIES ON THE GLUCOSE-TRANSPORT SYSTEM IN ESCHERICHIA COLI WITH ALPHA-METHYLGLUCOSIDE AS SUBSTRATE.
Biochim Biophys Acta. 1963 Nov 15;78:505-15. doi: 10.1016/0006-3002(63)90912-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验