Suppr超能文献

对受信息性删失影响的重复计数数据进行建模。

Modeling repeated count data subject to informative dropout.

作者信息

Albert P S, Follmann D A

机构信息

Biometric Research Branch, National Cancer Institute, Bethesda, Maryland 20892-7438, USA.

出版信息

Biometrics. 2000 Sep;56(3):667-77. doi: 10.1111/j.0006-341x.2000.00667.x.

Abstract

In certain diseases, outcome is the number of morbid events over the course of follow-up. In epilepsy, e.g., daily seizure counts are often used to reflect disease severity. Follow-up of patients in clinical trials of such diseases is often subject to censoring due to patients dying or dropping out. If the sicker patients tend to be censored in such trials, estimates of the treatment effect that do not incorporate the censoring process may be misleading. We extend the shared random effects approach of Wu and Carroll (1988, Biometrics 44, 175-188) to the setting of repeated counts of events. Three strategies are developed. The first is a likelihood-based approach for jointly modeling the count and censoring processes. A shared random effect is incorporated to introduce dependence between the two processes. The second is a likelihood-based approach that conditions on the dropout times in adjusting for informative dropout. The third is a generalized estimating equations (GEE) approach, which also conditions on the dropout times but makes fewer assumptions about the distribution of the count process. Estimation procedures for each of the approaches are discussed, and the approaches are applied to data from an epilepsy clinical trial. A simulation study is also conducted to compare the various approaches. Through analyses and simulations, we demonstrate the flexibility of the likelihood-based conditional model for analyzing data from the epilepsy trial.

摘要

在某些疾病中,结局是随访期间发病事件的数量。例如,在癫痫中,每日癫痫发作次数常被用来反映疾病严重程度。在此类疾病的临床试验中,由于患者死亡或退出,对患者的随访往往会受到删失的影响。如果病情较重的患者在此类试验中往往被删失,那么未纳入删失过程的治疗效果估计可能会产生误导。我们将Wu和Carroll(1988年,《生物统计学》44卷,第175 - 188页)的共享随机效应方法扩展到事件重复计数的情形。我们开发了三种策略。第一种是基于似然的方法,用于联合建模计数过程和删失过程。纳入一个共享随机效应以引入两个过程之间的依赖性。第二种是基于似然的方法,在调整信息性删失时以删失时间为条件。第三种是广义估计方程(GEE)方法,它也以删失时间为条件,但对计数过程的分布做了较少的假设。讨论了每种方法的估计程序,并将这些方法应用于一项癫痫临床试验的数据。还进行了一项模拟研究以比较各种方法。通过分析和模拟,我们展示了基于似然的条件模型在分析癫痫试验数据方面的灵活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验