Fujisawa H, Izumi S
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan.
Biometrics. 2000 Sep;56(3):706-11. doi: 10.1111/j.0006-341x.2000.00706.x.
Repeated binary responses provide efficient information for two purposes: (1) estimating two misclassification (false-positive and false-negative error) probabilities and (2) testing the hypothesis that either is zero in a reliability study. We focus on the assessment of reliability of a diagnostic test when there is no gold standard. This paper uses a latent class model and illustrates some of its properties. In addition, application to data containing variation among individuals is considered. We apply this model to the serological data on the MNSs blood group of atomic bomb survivors and their children. The results provide valuable information for examining measurement reliability.
(1)估计两种错误分类(假阳性和假阴性错误)概率;(2)在可靠性研究中检验两者中任何一个为零的假设。我们关注在没有金标准的情况下诊断测试的可靠性评估。本文使用了一个潜在类别模型并阐述了它的一些特性。此外,还考虑了该模型在包含个体差异的数据中的应用。我们将此模型应用于原子弹爆炸幸存者及其子女的MNSs血型血清学数据。这些结果为检验测量可靠性提供了有价值的信息。