Suppr超能文献

基于重复二元反应对错误分类概率的推断。

Inference about misclassification probabilities from repeated binary responses.

作者信息

Fujisawa H, Izumi S

机构信息

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan.

出版信息

Biometrics. 2000 Sep;56(3):706-11. doi: 10.1111/j.0006-341x.2000.00706.x.

Abstract

Repeated binary responses provide efficient information for two purposes: (1) estimating two misclassification (false-positive and false-negative error) probabilities and (2) testing the hypothesis that either is zero in a reliability study. We focus on the assessment of reliability of a diagnostic test when there is no gold standard. This paper uses a latent class model and illustrates some of its properties. In addition, application to data containing variation among individuals is considered. We apply this model to the serological data on the MNSs blood group of atomic bomb survivors and their children. The results provide valuable information for examining measurement reliability.

摘要

重复的二元反应可出于两个目的提供有效信息

(1)估计两种错误分类(假阳性和假阴性错误)概率;(2)在可靠性研究中检验两者中任何一个为零的假设。我们关注在没有金标准的情况下诊断测试的可靠性评估。本文使用了一个潜在类别模型并阐述了它的一些特性。此外,还考虑了该模型在包含个体差异的数据中的应用。我们将此模型应用于原子弹爆炸幸存者及其子女的MNSs血型血清学数据。这些结果为检验测量可靠性提供了有价值的信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验