Prahofer M, Spohn H
Zentrum Mathematik and Physik Department, TU Munchen, D-80290 Munchen, Germany.
Phys Rev Lett. 2000 May 22;84(21):4882-5. doi: 10.1103/PhysRevLett.84.4882.
We develop a scaling theory for Kardar-Parisi-Zhang growth in one dimension by a detailed study of the polynuclear growth model. In particular, we identify three universal distributions for shape fluctuations and their dependence on the macroscopic shape. These distribution functions are computed using the partition function of Gaussian random matrices in a cosine potential.
我们通过对多核生长模型的详细研究,建立了一维 Kardar-Parisi-Zhang 生长的标度理论。特别地,我们确定了形状涨落的三种普适分布及其对宏观形状的依赖性。这些分布函数是利用余弦势中高斯随机矩阵的配分函数计算得到的。