Suppr超能文献

应用于从彩色和立体图像中进行特征提取的独立成分分析。

Independent component analysis applied to feature extraction from colour and stereo images.

作者信息

Hoyer P O, Hyvärinen A

机构信息

Neural Networks Research Centre, Helsinki University of Technology, Finland.

出版信息

Network. 2000 Aug;11(3):191-210.

Abstract

Previous work has shown that independent component analysis (ICA) applied to feature extraction from natural image data yields features resembling Gabor functions and simple-cell receptive fields. This article considers the effects of including chromatic and stereo information. The inclusion of colour leads to features divided into separate red/green, blue/yellow, and bright/dark channels. Stereo image data, on the other hand, leads to binocular receptive fields which are tuned to various disparities. The similarities between these results and the observed properties of simple cells in the primary visual cortex are further evidence for the hypothesis that visual cortical neurons perform some type of redundancy reduction, which was one of the original motivations for ICA in the first place. In addition, ICA provides a principled method for feature extraction from colour and stereo images; such features could be used in image processing operations such as denoising and compression, as well as in pattern recognition.

摘要

先前的研究表明,将独立成分分析(ICA)应用于从自然图像数据中提取特征时,会产生类似于伽柏函数和简单细胞感受野的特征。本文考虑了纳入色度和立体信息的影响。纳入颜色会导致特征被分为单独的红/绿、蓝/黄和亮/暗通道。另一方面,立体图像数据会导致双目感受野被调整到各种视差。这些结果与初级视觉皮层中简单细胞的观察特性之间的相似性,进一步证明了视觉皮层神经元执行某种类型的冗余减少这一假设,这也是ICA最初的动机之一。此外,ICA为从彩色和立体图像中提取特征提供了一种有原则的方法;此类特征可用于诸如去噪和压缩等图像处理操作,以及模式识别。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验