Ramasco JJ, Lopez JM, Rodriguez MA
Instituto de Fisica de Cantabria, CSIC-UC, E-39005 Santander, Spain and Departamento de Fisica Moderna, Universidad de Cantabria, E-39005 Santander, Spain.
Phys Rev Lett. 2000 Mar 6;84(10):2199-202. doi: 10.1103/PhysRevLett.84.2199.
We study the dynamic scaling hypothesis in invariant surface growth. We show that the existence of power-law scaling of the correlation functions (scale invariance) does not determine a unique dynamic scaling form of the correlation functions, which leads to the different anomalous forms of scaling recently observed in growth models. We derive all the existing forms of anomalous dynamic scaling from a new generic scaling ansatz. The different scaling forms are subclasses of this generic scaling ansatz associated with bounds on the roughness exponent values. The existence of a new class of anomalous dynamic scaling is predicted and compared with simulations.
我们研究不变表面生长中的动态标度假设。我们表明,关联函数的幂律标度(尺度不变性)的存在并不能确定关联函数的唯一动态标度形式,这导致了最近在生长模型中观察到的不同异常标度形式。我们从一个新的通用标度假设中推导出所有现有的异常动态标度形式。不同的标度形式是与粗糙度指数值的界限相关的这个通用标度假设的子类。我们预测了一类新的异常动态标度的存在并与模拟结果进行了比较。