Suppr超能文献

囊性纤维化跨膜传导调节因子离子通道门控的非水解途径

The non-hydrolytic pathway of cystic fibrosis transmembrane conductance regulator ion channel gating.

作者信息

Aleksandrov A A, Chang X, Aleksandrov L, Riordan J R

机构信息

Mayo Foundation and S.C. Johnson Medical Research Center, Mayo Clinic, Scottsdale, AZ 85259, USA.

出版信息

J Physiol. 2000 Oct 15;528 Pt 2(Pt 2):259-65. doi: 10.1111/j.1469-7793.2000.00259.x.

Abstract

It has been suggested that the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel may utilize a novel gating mechanism in which open and closed states are not in thermodynamic equilibrium. This suggestion is based on the assumption that energy of ATP hydrolysis drives the gating cycle. We demonstrate that CFTR channel gating occurs in the absence of ATP hydrolysis and hence does not depend on an input of free energy from this source. The binding of ATP or structurally related analogues that are poorly or non-hydrolysable is sufficient to induce opening. Closing occurs on dissociation of these ligands or the hydrolysis products of those that can be cleaved. Not only can channel opening occur without ATP hydrolysis but the temperature dependence of the open probability (Po.) is reversed, i.e. Po. increases as temperature is lowered whereas under hydrolytic conditions, Po. increases as temperature is elevated. This indicates that there are different rate-limiting steps in the alternate gating pathways (hydrolytic and non-hydrolytic). These observations demonstrate that phosphorylated CFTR behaves as a conventional ligand-gated channel employing cytoplasmic ATP as a readily available cytoplasmic ligand; under physiological conditions ligand hydrolysis provides efficient reversibility of channel opening.

摘要

有人提出,囊性纤维化跨膜传导调节因子(CFTR)氯离子通道可能利用一种新型门控机制,其中开放态和关闭态并非处于热力学平衡状态。这一观点基于ATP水解能量驱动门控循环的假设。我们证明,CFTR通道门控在没有ATP水解的情况下发生,因此不依赖于来自该来源的自由能输入。ATP或结构相关的、水解能力差或不可水解的类似物的结合足以诱导通道开放。这些配体解离或可裂解配体的水解产物解离时,通道关闭。不仅通道开放可以在没有ATP水解的情况下发生,而且开放概率(Po.)的温度依赖性也会反转,即Po.随着温度降低而增加,而在水解条件下,Po.随着温度升高而增加。这表明在交替的门控途径(水解和非水解)中有不同的限速步骤。这些观察结果表明,磷酸化的CFTR表现为一种传统的配体门控通道,利用细胞质ATP作为易于获得的细胞质配体;在生理条件下,配体水解提供了通道开放的有效可逆性。

相似文献

1
The non-hydrolytic pathway of cystic fibrosis transmembrane conductance regulator ion channel gating.
J Physiol. 2000 Oct 15;528 Pt 2(Pt 2):259-65. doi: 10.1111/j.1469-7793.2000.00259.x.
2
On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
J Physiol. 2016 Jun 15;594(12):3227-44. doi: 10.1113/JP271723. Epub 2016 Mar 23.
4
ATP hydrolysis cycles and the gating of CFTR Cl- channels.
Acta Physiol Scand Suppl. 1998 Aug;643:247-56.
5
High affinity ATP/ADP analogues as new tools for studying CFTR gating.
J Physiol. 2005 Dec 1;569(Pt 2):447-57. doi: 10.1113/jphysiol.2005.095083. Epub 2005 Oct 13.
7
Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.
J Gen Physiol. 2006 Nov;128(5):523-33. doi: 10.1085/jgp.200609558. Epub 2006 Oct 16.
8
Regulation of CFTR ion channel gating by MgATP.
FEBS Lett. 1998 Jul 10;431(1):97-101. doi: 10.1016/s0014-5793(98)00713-3.
10
The CFTR chloride channel: nucleotide interactions and temperature-dependent gating.
J Membr Biol. 1998 May 1;163(1):55-66. doi: 10.1007/s002329900370.

引用本文的文献

1
Allosteric inhibition of CFTR gating by CFTRinh-172 binding in the pore.
Nat Commun. 2024 Aug 6;15(1):6668. doi: 10.1038/s41467-024-50641-1.
3
Nonequilibrium gating of CFTR on an equilibrium theme.
Physiology (Bethesda). 2012 Dec;27(6):351-61. doi: 10.1152/physiol.00026.2012.
4
CFTR: an ion channel with a transporter-type energy-coupling mechanism.
J Gen Physiol. 2012 Oct;140(4):343-5. doi: 10.1085/jgp.201210882. Epub 2012 Sep 10.
5
The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR.
J Physiol. 2011 Jun 1;589(Pt 11):2719-31. doi: 10.1113/jphysiol.2010.202861. Epub 2011 Apr 11.
6
ATP hydrolysis-dependent asymmetry of the conformation of CFTR channel pore.
J Physiol Sci. 2011 Jul;61(4):267-78. doi: 10.1007/s12576-011-0144-0. Epub 2011 Apr 3.
8
A stable ATP binding to the nucleotide binding domain is important for reliable gating cycle in an ABC transporter CFTR.
J Physiol Sci. 2010 Sep;60(5):353-62. doi: 10.1007/s12576-010-0102-2. Epub 2010 Jul 14.
9
CFTR: break a pump, make a channel.
Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):959-60. doi: 10.1073/pnas.0913576107. Epub 2010 Jan 8.

本文引用的文献

2
Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis.
Physiol Rev. 1999 Jan;79(1 Suppl):S77-S107. doi: 10.1152/physrev.1999.79.1.S77.
3
Structure and function of the CFTR chloride channel.
Physiol Rev. 1999 Jan;79(1 Suppl):S23-45. doi: 10.1152/physrev.1999.79.1.S23.
4
Regulation of CFTR ion channel gating by MgATP.
FEBS Lett. 1998 Jul 10;431(1):97-101. doi: 10.1016/s0014-5793(98)00713-3.
5
The CFTR chloride channel: nucleotide interactions and temperature-dependent gating.
J Membr Biol. 1998 May 1;163(1):55-66. doi: 10.1007/s002329900370.
6
Fluoride stimulates cystic fibrosis transmembrane conductance regulator Cl- channel activity.
Am J Physiol. 1998 Mar;274(3):L305-12. doi: 10.1152/ajplung.1998.274.3.L305.
7
ATPase activity of the cystic fibrosis transmembrane conductance regulator.
J Biol Chem. 1996 Nov 8;271(45):28463-8. doi: 10.1074/jbc.271.45.28463.
8
Lack of conventional ATPase properties in CFTR chloride channel gating.
J Membr Biol. 1996 May;151(1):63-75. doi: 10.1007/s002329900058.
10
5'-Adenylylimidodiphosphate does not activate CFTR chloride channels in cell-free patches of membrane.
Am J Physiol. 1993 Jul;265(1 Pt 1):L27-32. doi: 10.1152/ajplung.1993.265.1.L27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验