Hülsmann A, Lurz R, Scheffel F, Schneider E
Humboldt-Universität zu Berlin, Institut für Biologie/Bakterienphysiologie, D-10099 Berlin, Germany.
J Bacteriol. 2000 Nov;182(22):6292-301. doi: 10.1128/JB.182.22.6292-6301.2000.
We have studied the uptake of maltose in the thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius, which grows best at 57 degrees C and pH 3.5. Under these conditions, accumulation of [(14)C]maltose was observed in cells grown with maltose but not in those grown with glucose. At lower temperatures or higher pH values, the transport rates substantially decreased. Uptake of radiolabeled maltose was inhibited by maltotetraose, acarbose, and cyclodextrins but not by lactose, sucrose, or trehalose. The kinetic parameters (K(m) of 0.91 +/- 0.06 microM and V(max) ranging from 0.6 to 3.7 nmol/min/mg of protein) are consistent with a binding protein-dependent ATP binding cassette (ABC) transporter. A corresponding binding protein (MalE) that interacts with maltose with high affinity (K(d) of 1.5 microM) was purified from the culture supernatant of maltose-grown cells. Immunoelectron microscopy revealed distribution of the protein throughout the cell wall. The malE gene was cloned and sequenced. Five additional open reading frames, encoding components of a maltose transport system (MalF and MalG), a putative transcriptional regulator (MalR), a cyclodextrinase (CdaA), and an alpha-glucosidase (GlcA), were identified downstream of malE. The malE gene lacking the DNA sequence that encodes the signal sequence was expressed in Escherichia coli. The purified wild-type and recombinant proteins bind maltose with high affinity over a wide pH range (2.5 to 7) and up to 80 degrees C. Recombinant MalE cross-reacted with an antiserum raised against the wild-type protein, thereby indicating that the latter is the product of the malE gene. The MalE protein might be well suited as a model to study tolerance of proteins to low pH.
我们研究了嗜热嗜酸革兰氏阳性菌嗜酸 Alicyclobacillus acidocaldarius 对麦芽糖的摄取情况,该菌在 57 摄氏度和 pH 3.5 条件下生长最佳。在这些条件下,观察到以麦芽糖为生长底物的细胞中积累了 [(14)C]麦芽糖,而以葡萄糖为生长底物的细胞中则未积累。在较低温度或较高 pH 值条件下,转运速率大幅下降。放射性标记的麦芽糖摄取受到麦芽四糖、阿卡波糖和环糊精的抑制,但不受乳糖、蔗糖或海藻糖的抑制。动力学参数(K(m)为 0.91±0.06 microM,V(max)范围为 0.6 至 3.7 nmol/分钟/毫克蛋白质)与依赖结合蛋白的 ATP 结合盒(ABC)转运体一致。从以麦芽糖生长的细胞培养上清液中纯化出了一种与麦芽糖具有高亲和力(K(d)为 1.5 microM)的相应结合蛋白(MalE)。免疫电子显微镜显示该蛋白分布于整个细胞壁。克隆并测序了 malE 基因。在 malE 下游鉴定出另外五个开放阅读框,分别编码麦芽糖转运系统的组成部分(MalF 和 MalG)、一个假定的转录调节因子(MalR)、一种环糊精酶(CdaA)和一种α-葡萄糖苷酶(GlcA)。缺失编码信号序列的 DNA 序列的 malE 基因在大肠杆菌中表达。纯化的野生型和重组蛋白在较宽的 pH 范围(2.5 至 7)和高达 80 摄氏度的温度下都能与麦芽糖高亲和力结合。重组 MalE 与针对野生型蛋白产生的抗血清发生交叉反应,从而表明后者是 malE 基因的产物。MalE 蛋白可能非常适合作为研究蛋白质对低 pH 耐受性的模型。