Suppr超能文献

利用神经网络进行选择性采样以克服先验概率的偏差。

Selective sampling to overcome skewed a priori probabilities with neural networks.

作者信息

Ennett C M, Frize M

机构信息

Carleton University, Ottawa, ON, Canada.

出版信息

Proc AMIA Symp. 2000:225-9.

Abstract

Highly skewed a priori probabilities present challenges for researchers developing medical decision aids due to a lack of information on the rare outcome of interest. This paper attempts to overcome this obstacle by artificially increasing the mortality rate of the training sets. A weight pruning technique called weight-elimination is also applied to this coronary artery bypass grafting (CABG) database to assess its impact on the artificial neural network's (ANN) performance. The results showed that increasing the mortality rate improved the sensitivity rates at the cost of the other performance measures, and the weight-elimination cost function improved the sensitivity rate without seriously affecting the other performance measures.

摘要

由于缺乏关于感兴趣的罕见结果的信息,高度偏态的先验概率给开发医学决策辅助工具的研究人员带来了挑战。本文试图通过人为提高训练集的死亡率来克服这一障碍。一种称为权重消除的权重修剪技术也应用于这个冠状动脉旁路移植术(CABG)数据库,以评估其对人工神经网络(ANN)性能的影响。结果表明,提高死亡率以牺牲其他性能指标为代价提高了敏感度,而权重消除成本函数提高了敏感度,同时没有严重影响其他性能指标。

相似文献

10
Computation of madalines' sensitivity to input and weight perturbations.
Neural Comput. 2006 Nov;18(11):2854-77. doi: 10.1162/neco.2006.18.11.2854.

本文引用的文献

4
1995 coronary artery bypass risk model: The Society of Thoracic Surgeons Adult Cardiac National Database.
Ann Thorac Surg. 1998 Mar;65(3):879-84. doi: 10.1016/s0003-4975(98)00025-3.
7
Calculating risk and outcome: The Society of Thoracic Surgeons database.
Ann Thorac Surg. 1996 Nov;62(5 Suppl):S2-5; discussion S31-2. doi: 10.1016/0003-4975(96)00818-1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验