Suppr超能文献

使用概率神经网络估计心脏手术后的死亡风险。

Use of a probabilistic neural network to estimate the risk of mortality after cardiac surgery.

作者信息

Orr R K

机构信息

Department of Surgery, Fallon Healthcare System, Worcester, MA 01606, USA.

出版信息

Med Decis Making. 1997 Apr-Jun;17(2):178-85. doi: 10.1177/0272989X9701700208.

Abstract

OBJECTIVE

To develop a probabilistic neural network (PNN) to estimate mortality risk following cardiac surgery.

DESIGN AND SETTING

The PNN model was created using an institutional database obtained as part of routine quality assurance activity. Patient records (from 1991 to 1993) were randomly divided into training (n = 732) and validation (n = 380) sets. The model uses seven variables, each obtainable during routine clinical patient care. After completion of the initial validation phase, newer data (1994) became available and were used as an independent source of validation (n = 365).

PATIENTS

1,477 consecutive cardiac surgery patients operated on in a teaching hospital during a four-year period (1991-94).

RESULTS

The overall accuracy of the neural network was 91.5% in the training set; it was 92.3% in the validation set. The model was well calibrated (p = 0.21 for the Hosmer-Lemeshow goodness-of-fit test) and discriminated well (areas under the ROC curves were 0.72 and 0.81 for the training and validation sets). The trained network also performed well on the 1994 data (ROC = 0.74, p = 0.19 for the Hosmer-Lemeshow test), albeit with a slight decrement in overall accuracy (88.2%).

CONCLUSION

A neural network may be implemented to estimate mortality risk following cardiac surgery. Implementation is relatively rapid, and it is an alternative to standard statistical approaches.

摘要

目的

开发一种概率神经网络(PNN)以估计心脏手术后的死亡风险。

设计与环境

PNN模型是使用作为常规质量保证活动一部分获得的机构数据库创建的。患者记录(1991年至1993年)被随机分为训练集(n = 732)和验证集(n = 380)。该模型使用七个变量,每个变量在常规临床患者护理期间均可获得。在初始验证阶段完成后,有了更新的数据(1994年)并将其用作独立的验证来源(n = 365)。

患者

在四年期间(1991 - 94年)于一家教学医院接受手术的1477例连续心脏手术患者。

结果

神经网络在训练集中的总体准确率为91.5%;在验证集中为92.3%。该模型校准良好(Hosmer-Lemeshow拟合优度检验的p = 0.21)且区分能力良好(训练集和验证集的ROC曲线下面积分别为0.72和0.81)。训练后的网络在1994年的数据上也表现良好(ROC = 0.74,Hosmer-Lemeshow检验的p = 0.19),尽管总体准确率略有下降(88.2%)。

结论

可以实施神经网络来估计心脏手术后的死亡风险。实施相对快速,并且是标准统计方法的一种替代方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验