Anderson R M, Garnett G P
Wellcome Trust Centre for the Epidemiology of Infectious Disease, University of Oxford, United Kingdom.
Sex Transm Dis. 2000 Nov;27(10):636-43. doi: 10.1097/00007435-200011000-00012.
The development of mathematical models to describe and interpret the epidemiology of sexually transmitted infections has involved the incremental addition of various forms of biological and behavioral complexity to simple mathematical templates.
To review simple and complex models used in study of observed epidemiologic pattern.
An overview of modeling in sexually transmitted disease epidemiology identifies the function of different types of models.
Simple models have the advantage of transparency and analytical tractability and can illustrate the relative merits of different intervention options. However, real life is replete with complexities that can have effects that are difficult to predict in the absence of a mathematical framework.
Research should increasingly be based on robust parameterization of model structures and try to capture individual behaviors. Progress will be most rapid by interdisciplinary work where the clinician, epidemiologist, and mathematician work collaboratively to help improve our knowledge of how to best control infection and disease.
用于描述和解释性传播感染流行病学的数学模型的发展,涉及在简单数学模板上逐步增加各种形式的生物学和行为复杂性。
回顾用于研究观察到的流行病学模式的简单和复杂模型。
对性传播疾病流行病学建模的概述确定了不同类型模型的功能。
简单模型具有透明度和分析易处理性的优点,并且可以说明不同干预选项的相对优点。然而,现实生活充满了复杂性,在没有数学框架的情况下,这些复杂性可能产生难以预测的影响。
研究应越来越多地基于模型结构的稳健参数化,并尝试捕捉个体行为。通过临床医生、流行病学家和数学家共同合作的跨学科工作,进步将最为迅速,以帮助提高我们对如何最佳控制感染和疾病的认识。