Suppr超能文献

互联网上的失语症数据库:失语症学中计算机辅助分析的一个模型。

An aphasia database on the internet: a model for computer-assisted analysis in aphasiology.

作者信息

Axer H, Jantzen J, Graf von Keyserlingk D

机构信息

Department of Anatomy I, RWTH Aachen, Aachen, Germany.

出版信息

Brain Lang. 2000 Dec;75(3):390-8. doi: 10.1006/brln.2000.2362.

Abstract

A web-based software model was developed as an example for data mining in aphasiology. It is used for educating medical and engineering students. It is based upon a database of 254 aphasic patients which contains the diagnosis of the aphasia type, profiles of an aphasia test battery (Aachen Aphasia Test), and some further clinical information. In addition, the cerebral lesion profiles of 147 of these cases were standardized by transferring the coordinates of the lesions to a 3D reference brain based upon the ACPC coordinate system. Two artificial neural networks were used to perform a classification of the aphasia type. First, a coarse classification was achieved by using an assessment of spontaneous speech of the patient which produced correct results in 87% of the test cases. Data analysis tools were used to select four features of the 30 available test features to yield a more accurate diagnosis. This classifier produced correct results in 92% of the test cases. The neural network approach is similar to grouping performed in group studies, while the nearest-neighbor method shows a design more similar to case studies. It finds the neurolinguistic and the lesion data of patients whose AAT profiles are most similar to the user's input. This way lesion profiles can be compared to each other interindividually. The Aphasia Diagnoser is available on the Web address http://fuzzy.iau.dtu.dk/aphasia.nsf and thus should facilitate a discussion about the reliability and possibilities of data-mining techniques in aphasiology.

摘要

开发了一种基于网络的软件模型,作为失语症数据挖掘的一个示例。它用于医学和工程专业学生的教学。该模型基于一个包含254名失语症患者的数据库,其中包括失语症类型的诊断、失语症测试量表(亚琛失语症测试)的概况以及一些其他临床信息。此外,通过将其中147例患者的脑损伤坐标基于ACPC坐标系转换到一个三维参考脑,对这些病例的脑损伤概况进行了标准化。使用两个人工神经网络对失语症类型进行分类。首先,通过评估患者的自发语言进行粗略分类,在87%的测试病例中得出了正确结果。使用数据分析工具从30个可用测试特征中选择四个特征,以获得更准确的诊断。该分类器在92%的测试病例中得出了正确结果。神经网络方法类似于群体研究中的分组,而最近邻方法的设计更类似于案例研究。它会找到AAT概况与用户输入最相似的患者的神经语言学和损伤数据。通过这种方式,可以对个体间的损伤概况进行相互比较。失语症诊断器可在网址http://fuzzy.iau.dtu.dk/aphasia.nsf上获取,因此应有助于就失语症学中数据挖掘技术的可靠性和可能性展开讨论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验