Friel D D
Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106-4975, USA.
Cell Calcium. 2000 Nov-Dec;28(5-6):307-16. doi: 10.1054/ceca.2000.0172.
An important challenge in the study of Ca2+ signalling is to understand the dynamics of intracellular Ca2+ levels during and after physiological stimulation. While extensive information is available regarding the structural and biophysical properties of Ca2+ channels, pumps and exchangers that control cellular Ca2+ movements, little is known about the quantitative properties of the transporters that are expressed together in intact cells or about the way they operate as a system to orchestrate stimulus-induced Ca2+ signals. This lack of information is particularly striking given that many qualitative properties of Ca2+ signals (e.g. whether the Ca2+ concentration within a particular organelle rises or falls during stimulation) depend critically on quantitative properties of the underlying Ca2+ transporters (e.g. the rates of Ca2+ uptake and release by the organelle). This monograph describes the in situ characterization of Ca2+ transport pathways in sympathetic neurons, showing how mitochondrial Ca2+ uptake and release systems define the direction and rate of net Ca2+ transport by this organelle, and how the interplay between mitochondrial Ca2+ transport and Ca+2 transport across the plasma membrane contribute to depolarization-evoked Ca2+ signals in intact cells.
钙信号研究中的一个重要挑战是了解生理刺激期间及之后细胞内钙水平的动态变化。虽然关于控制细胞钙移动的钙通道、泵和交换器的结构和生物物理特性已有大量信息,但对于完整细胞中共同表达的转运蛋白的定量特性,或者它们作为一个系统协调刺激诱导的钙信号的运作方式,我们知之甚少。鉴于钙信号的许多定性特性(例如在刺激期间特定细胞器内的钙浓度是升高还是降低)严重依赖于潜在钙转运蛋白的定量特性(例如细胞器摄取和释放钙的速率),这种信息的缺乏尤为明显。这本专著描述了交感神经元中钙转运途径的原位特征,展示了线粒体钙摄取和释放系统如何定义该细胞器净钙转运的方向和速率,以及线粒体钙转运与跨质膜的钙转运之间的相互作用如何促成完整细胞中去极化诱发的钙信号。