Coleman S, Linderman R, Hodgson E, Rose R L
Department of Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA.
Environ Health Perspect. 2000 Dec;108(12):1151-7. doi: 10.1289/ehp.001081151.
Acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methyl-phenyl)-acetamide], alachlor [N-(methoxymethyl)-2-chloro-N-(2, 6-diethyl-phenyl)acetamide], butachlor [N-(butoxymethyl)-2-chloro-N-(2,6-diethyl-phenyl)acetamide], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] are pre-emergent herbicides used in the production of agricultural crops. These herbicides are carcinogenic in rats: acetochlor and alachlor cause tumors in the nasal turbinates, butachlor causes stomach tumors, and metolachlor causes liver tumors. It has been suggested that the carcinogenicity of these compounds involves a complex metabolic activation pathway leading to a DNA-reactive dialkylbenzoquinone imine. Important intermediates in this pathway are 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA) produced from alachlor and butachlor and 2-chloro-N-(2-methyl-6-ethylphenyl)acetamide (CMEPA) produced from acetochlor and metolachlor. Subsequent metabolism of CDEPA and CMEPA produces 2,6-diethylaniline (DEA) and 2-methyl-6-ethylaniline (MEA), which are bioactivated through para-hydroxylation and subsequent oxidation to the proposed carcinogenic product dialkylbenzoquinone imine. The current study extends our earlier studies with alachlor and demonstrates that rat liver microsomes metabolize acetochlor and metolachlor to CMEPA (0.065 nmol/min/mg and 0.0133 nmol/min/mg, respectively), whereas human liver microsomes can metabolize only acetochlor to CMEPA (0.023 nmol/min/mg). Butachlor is metabolized to CDEPA to a much greater extent by rat liver microsomes (0.045 nmol/min/mg) than by human liver microsomes (< 0.001 nmol/min/mg). We have determined that both rat and human livers metabolize both CMEPA to MEA (0.308 nmol/min/mg and 0.541 nmol/min/mg, respectively) and CDEPA to DEA (0.350 nmol/min/mg and 0.841 nmol/min/mg, respectively). We have shown that both rat and human liver microsomes metabolize MEA (0.035 nmol/min/mg and 0.069 nmol/min/mg, respectively) and DEA (0.041 nmol/min/mg and 0.040 nmol/min/mg, respectively). We have also shown that the cytochrome P450 isoforms responsible for human metabolism of acetochlor, butachlor, and metolachlor are CYP3A4 and CYP2B6.
乙草胺[2-氯-N-(乙氧基甲基)-N-(2-乙基-6-甲基苯基)乙酰胺]、甲草胺[N-(甲氧基甲基)-2-氯-N-(2,6-二乙基苯基)乙酰胺]、丁草胺[N-(丁氧基甲基)-2-氯-N-(2,6-二乙基苯基)乙酰胺]和异丙甲草胺[2-氯-N-(2-乙基-6-甲基苯基)-N-(2-甲氧基-1-甲基乙基)乙酰胺]是用于农作物生产的芽前除草剂。这些除草剂对大鼠具有致癌性:乙草胺和甲草胺会导致鼻甲肿瘤,丁草胺会导致胃部肿瘤,而异丙甲草胺会导致肝脏肿瘤。有人认为,这些化合物的致癌性涉及一条复杂的代谢活化途径,最终导致产生具有DNA反应性的二烷基苯醌亚胺。该途径中的重要中间体是由甲草胺和丁草胺产生的2-氯-N-(2,6-二乙基苯基)乙酰胺(CDEPA)以及由乙草胺和异丙甲草胺产生的2-氯-N-(2-甲基-6-乙基苯基)乙酰胺(CMEPA)。CDEPA和CMEPA的后续代谢产生2,6-二乙苯胺(DEA)和2-甲基-6-乙苯胺(MEA),它们通过对羟基化和随后的氧化作用被生物活化,生成推测的致癌产物二烷基苯醌亚胺。当前的研究扩展了我们早期对甲草胺的研究,并表明大鼠肝微粒体可将乙草胺和异丙甲草胺代谢为CMEPA(分别为0.065 nmol/分钟/毫克和0.0133 nmol/分钟/毫克),而人肝微粒体仅能将乙草胺代谢为CMEPA(0.023 nmol/分钟/毫克)。大鼠肝微粒体将丁草胺代谢为CDEPA的程度(0.045 nmol/分钟/毫克)远高于人肝微粒体(<0.001 nmol/分钟/毫克)。我们已经确定,大鼠和人肝脏均可将CMEPA代谢为MEA(分别为0.308 nmol/分钟/毫克和0.541 nmol/分钟/毫克),并将CDEPA代谢为DEA(分别为0.350 nmol/分钟/毫克和0.841 nmol/分钟/毫克)。我们已经表明,大鼠和人肝微粒体均可代谢MEA(分别为0.035 nmol/分钟/毫克和0.069 nmol/分钟/毫克)和DEA(分别为0.041 nmol/分钟/毫克和0.040 nmol/分钟/毫克)。我们还表明,负责乙草胺、丁草胺和异丙甲草胺人体代谢的细胞色素P450同工酶是CYP3A4和CYP2B6。