Suppr超能文献

通过原语素组合实现运动学习。

Motor learning through the combination of primitives.

作者信息

Mussa-Ivaldi F A, Bizzi E

机构信息

Department of Physiology, Northwestern University Medical School, Chicago, IL, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2000 Dec 29;355(1404):1755-69. doi: 10.1098/rstb.2000.0733.

Abstract

In this paper we discuss a new perspective on how the central nervous system (CNS) represents and solves some of the most fundamental computational problems of motor control. In particular, we consider the task of transforming a planned limb movement into an adequate set of motor commands. To carry out this task the CNS must solve a complex inverse dynamic problem. This problem involves the transformation from a desired motion to the forces that are needed to drive the limb. The inverse dynamic problem is a hard computational challenge because of the need to coordinate multiple limb segments and because of the continuous changes in the mechanical properties of the limbs and of the environment with which they come in contact. A number of studies of motor learning have provided support for the idea that the CNS creates, updates and exploits internal representations of limb dynamics in order to deal with the complexity of inverse dynamics. Here we discuss how such internal representations are likely to be built by combining the modular primitives in the spinal cord as well as other building blocks found in higher brain structures. Experimental studies on spinalized frogs and rats have led to the conclusion that the premotor circuits within the spinal cord are organized into a set of discrete modules. Each module, when activated, induces a specific force field and the simultaneous activation of multiple modules leads to the vectorial combination of the corresponding fields. We regard these force fields as computational primitives that are used by the CNS for generating a rich grammar of motor behaviours.

摘要

在本文中,我们探讨了一种关于中枢神经系统(CNS)如何表征和解决运动控制中一些最基本计算问题的新观点。具体而言,我们考虑将计划好的肢体运动转化为一组适当的运动指令的任务。为了执行此任务,中枢神经系统必须解决一个复杂的逆动力学问题。这个问题涉及从期望的运动到驱动肢体所需的力的转换。逆动力学问题是一个艰巨的计算挑战,因为需要协调多个肢体节段,并且肢体及其接触的环境的机械特性会不断变化。许多运动学习研究为以下观点提供了支持:中枢神经系统创建、更新并利用肢体动力学的内部表征,以应对逆动力学的复杂性。在这里,我们讨论这种内部表征可能是如何通过结合脊髓中的模块化原语以及在更高脑结构中发现的其他构建块来构建的。对脊髓蛙和大鼠的实验研究得出结论,脊髓内的运动前电路被组织成一组离散的模块。每个模块在被激活时会诱导一个特定的力场,多个模块的同时激活会导致相应场的矢量组合。我们将这些力场视为中枢神经系统用于生成丰富运动行为语法的计算原语。

相似文献

1
Motor learning through the combination of primitives.通过原语素组合实现运动学习。
Philos Trans R Soc Lond B Biol Sci. 2000 Dec 29;355(1404):1755-69. doi: 10.1098/rstb.2000.0733.
3
Linear combinations of primitives in vertebrate motor control.脊椎动物运动控制中基元的线性组合。
Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7534-8. doi: 10.1073/pnas.91.16.7534.
8
A critical evaluation of the force control hypothesis in motor control.对运动控制中力控制假说的批判性评估。
Exp Brain Res. 2003 Dec;153(3):275-88. doi: 10.1007/s00221-003-1624-0. Epub 2003 Sep 13.

引用本文的文献

1
Ethnokinesiology: towards a neuromechanical understanding of cultural differences in movement.民族肌动学:走向对运动文化差异的神经力学理解。
Philos Trans R Soc Lond B Biol Sci. 2024 Oct 7;379(1911):20230485. doi: 10.1098/rstb.2023.0485. Epub 2024 Aug 19.
3
Anthropomorphic motion planning for multi-degree-of-freedom arms.多自由度手臂的拟人化运动规划
Front Bioeng Biotechnol. 2024 May 28;12:1388609. doi: 10.3389/fbioe.2024.1388609. eCollection 2024.
10
Motor modules account for active perception of force.运动模块负责主动感知力量。
Sci Rep. 2019 Jun 20;9(1):8983. doi: 10.1038/s41598-019-45480-w.

本文引用的文献

3
Forward Models for Physiological Motor Control.生理运动控制的前向模型
Neural Netw. 1996 Nov;9(8):1265-1279. doi: 10.1016/s0893-6080(96)00035-4.
7
Internal models for motor control.运动控制的内部模型
Novartis Found Symp. 1998;218:291-304; discussion 304-7. doi: 10.1002/9780470515563.ch16.
9
Constructive incremental learning from only local information.
Neural Comput. 1998 Nov 15;10(8):2047-84. doi: 10.1162/089976698300016963.
10
Reference frames and internal models for visuo-manual coordination: what can we learn from microgravity experiments?
Brain Res Brain Res Rev. 1998 Nov;28(1-2):143-54. doi: 10.1016/s0165-0173(98)00034-4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验