Li Y H, Lau P C, Lee J H, Ellen R P, Cvitkovitch D G
Dental Research Institute, University of Toronto, Toronto, Ontario, Canada M5G 1G6.
J Bacteriol. 2001 Feb;183(3):897-908. doi: 10.1128/JB.183.3.897-908.2001.
Streptococcus mutans is a bacterium that has evolved to be dependent upon a biofilm "lifestyle" for survival and persistence in its natural ecosystem, dental plaque. We initiated this study to identify the genes involved in the development of genetic competence in S. mutans and to assay the natural genetic transformability of biofilm-grown cells. Using genomic analyses, we identified a quorum-sensing peptide pheromone signaling system similar to those previously found in other streptococci. The genetic locus of this system comprises three genes, comC, comD, and comE, that encode a precursor to the peptide competence factor, a histidine kinase, and a response regulator, respectively. We deduced the sequence of comC and its active pheromone product and chemically synthesized the corresponding 21-amino-acid competence-stimulating peptide (CSP). Addition of CSP to noncompetent cells facilitated increased transformation frequencies, with typically 1% of the total cell population transformed. To further confirm the roles of these genes in genetic competence, we inactivated them by insertion-duplication mutagenesis or allelic replacement followed by assays of transformation efficiency. We also demonstrated that biofilm-grown S. mutans cells were transformed at a rate 10- to 600-fold higher than planktonic S. mutans cells. Donor DNA included a suicide plasmid, S. mutans chromosomal DNA harboring a heterologous erythromycin resistance gene, and a replicative plasmid. The cells were optimally transformed during the formation of 8- to 16-h-old biofilms primarily consisting of microcolonies on solid surfaces. We also found that dead cells in the biofilms could act as donors of a chromosomally encoded antibiotic resistance determinant. This work demonstrated that a peptide pheromone system controls genetic competence in S. mutans and that the system functions optimally when the cells are living in actively growing biofilms.
变形链球菌是一种进化到依赖生物膜“生活方式”在其自然生态系统——牙菌斑中生存和持续存在的细菌。我们开展这项研究以鉴定参与变形链球菌遗传感受态发育的基因,并测定生物膜生长细胞的天然遗传转化能力。通过基因组分析,我们鉴定出一种群体感应肽信息素信号系统,类似于先前在其他链球菌中发现的系统。该系统的遗传位点包含三个基因,即comC、comD和comE,它们分别编码肽感受态因子的前体、组氨酸激酶和应答调节因子。我们推导了comC及其活性信息素产物的序列,并化学合成了相应的21个氨基酸的感受态刺激肽(CSP)。将CSP添加到无感受态细胞中可提高转化频率,通常有1%的总细胞群体被转化。为了进一步证实这些基因在遗传感受态中的作用,我们通过插入重复诱变或等位基因替换使其失活,随后测定转化效率。我们还证明,生物膜生长的变形链球菌细胞的转化速率比浮游变形链球菌细胞高10至600倍。供体DNA包括一个自杀质粒、携带异源红霉素抗性基因的变形链球菌染色体DNA和一个复制性质粒。在主要由固体表面上的微菌落组成的8至16小时龄生物膜形成过程中,细胞的转化最为理想。我们还发现生物膜中的死细胞可作为染色体编码的抗生素抗性决定因素的供体。这项工作表明,肽信息素系统控制变形链球菌的遗传感受态,并且当细胞生活在活跃生长的生物膜中时,该系统功能最佳。