Suppr超能文献

运动肌肉中的“糖原分流”:糖原在肌肉能量代谢和疲劳中的作用。

The "glycogen shunt" in exercising muscle: A role for glycogen in muscle energetics and fatigue.

作者信息

Shulman R G, Rothman D L

机构信息

Departments of Molecular Biophysics and Biochemistry and Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA.

出版信息

Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):457-61. doi: 10.1073/pnas.98.2.457.

Abstract

Stimulated by recent (13)C and (31)P NMR studies of exercising muscle, we propose a model of the energetics of contraction. Previous studies of energetics have followed energy consumption. However, the rapidity of contraction, in 10-40 msec, requires that energy be delivered rapidly, so that the muscle has power requirements of rapid energy expenditure that are ultimately met by the slower averaged consumption of carbon and oxygen from blood. We propose that energy is supplied in milliseconds by glycogenolysis and that between contractions, glycogenesis refills the pools. The energy for glycogenesis is supplied by oxidative phosphorylation. This mechanism utilizes the rapid conversion of glycogen phosphorylase, the "fight-or-flight" enzyme, to its active form. Lactate is necessarily generated by this pathway to serve as a time buffer between fast and slow energy needs, which resolves the paradoxical generation of lactate in well oxygenated tissue. Consequences of the glycogen shunt are compatible with numerous biochemical and physiological experiments. The model provides a possible mechanism for muscle fatigue, suggesting that at low but nonzero glycogen concentrations, there is not enough glycogen to supply millisecond energy needs.

摘要

受近期对运动肌肉的¹³C和³¹P核磁共振研究的启发,我们提出了一个收缩能量学模型。先前的能量学研究关注的是能量消耗。然而,收缩过程在10 - 40毫秒内迅速发生,这就要求能量快速供应,以至于肌肉对能量快速消耗有功率需求,而这最终由血液中碳和氧较慢的平均消耗来满足。我们提出能量在数毫秒内由糖原分解供应,并且在收缩之间,糖原合成会补充糖原储备。糖原合成的能量由氧化磷酸化提供。这种机制利用了糖原磷酸化酶(“应急”酶)迅速转化为其活性形式。该途径必然会产生乳酸,以作为快速和缓慢能量需求之间的时间缓冲,这解决了在充分氧合的组织中乳酸产生的矛盾现象。糖原分流的结果与众多生化和生理学实验相符。该模型为肌肉疲劳提供了一种可能的机制,表明在低但非零的糖原浓度下,没有足够的糖原供应毫秒级的能量需求。

相似文献

2
Glycogen turnover forms lactate during exercise.运动期间糖原周转会生成乳酸。
Exerc Sport Sci Rev. 2005 Oct;33(4):157-62. doi: 10.1097/00003677-200510000-00002.
6
[Muscle activity and energy expenditure].
Rev Mal Respir. 2011 Dec;28(10):1278-92. doi: 10.1016/j.rmr.2011.06.014. Epub 2011 Nov 6.
7
Mechanisms of exertional fatigue in muscle glycogenoses.肌肉糖原贮积症致运动性疲劳的机制。
Neuromuscul Disord. 2012 Dec;22 Suppl 3:S168-71. doi: 10.1016/j.nmd.2012.10.011.

引用本文的文献

1
The metabolic underpinnings of sebaceous lipogenesis.皮脂腺脂质生成的代谢基础。
Commun Biol. 2025 Apr 27;8(1):670. doi: 10.1038/s42003-025-08105-9.
4
A self-reinforcing cycle hypothesis in heart failure pathogenesis.心力衰竭发病机制中的自我强化循环假说。
Nat Cardiovasc Res. 2024 Jun;3(6):627-636. doi: 10.1038/s44161-024-00480-6. Epub 2024 Jun 3.
10
The impact of metabolism on the adaptation of organisms to environmental change.新陈代谢对生物体适应环境变化的影响。
Front Cell Dev Biol. 2023 Jun 12;11:1197226. doi: 10.3389/fcell.2023.1197226. eCollection 2023.

本文引用的文献

2
Mammalian fuel utilization during sustained exercise.哺乳动物在持续运动期间的燃料利用情况。
Comp Biochem Physiol B Biochem Mol Biol. 1998 May;120(1):89-107. doi: 10.1016/s0305-0491(98)00025-x.
4
Metabolic fluctuation during a muscle contraction cycle.
Am J Physiol. 1998 Mar;274(3):C846-52. doi: 10.1152/ajpcell.1998.274.3.C846.
7
Combined myofibrillar and mitochondrial creatine kinase deficiency impairs mouse diaphragm isotonic function.
J Appl Physiol (1985). 1997 May;82(5):1416-23. doi: 10.1152/jappl.1997.82.5.1416.
8
Regulation of carbohydrate and fat metabolism during and after exercise.
Annu Rev Nutr. 1996;16:121-38. doi: 10.1146/annurev.nu.16.070196.001005.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验