Sabatini A M
Scuola Superiore Sant'Anna, Pisa, Italy.
Med Biol Eng Comput. 2000 Nov;38(6):617-24. doi: 10.1007/BF02344866.
A stochastic complexity analysis is applied to centre-of-pressure (COP) time series, by using different complexity features, namely the spectral entropy, the approximate entropy, and the singular value decomposition spectrum entropy. A principal component analysis allows an estimate of the overall signal complexity in terms of the ensemble complexity score; the difference in values between open-eyes (OE) and closed-eyes (CE) trials is used for clustering purposes. In experiments on healthy young adults, the complexity of the mediolateral component is shown not to depend on the manipulation of vision. Conversely, the increase of the anteroposterior complexity in OE conditions can be statistically significant, leading to a functional division of the subjects into two groups: the Romberg ratios (RRs), namely the ratios of the CE measure to the OE measure, are: RR = 1.19 +/- 0.15 (group 1 subjects), and RR = 1.05 +/- 0.14 (group 2 subjects). Multivariate statistical techniques are applied to the complexity features and the parameters of a postural sway model recently proposed; the results suggest that the complexity change is the sign of information-generating behaviours of postural fluctuations, in the presence of a control strategy which aims at loosening long-range correlation and decreasing stochastic activity when visual feedback is allowed.
通过使用不同的复杂度特征,即频谱熵、近似熵和奇异值分解谱熵,对压力中心(COP)时间序列进行了随机复杂度分析。主成分分析允许根据总体复杂度得分估计整体信号复杂度;睁眼(OE)试验和闭眼(CE)试验之间的值差用于聚类目的。在对健康年轻成年人的实验中,结果表明,内侧-外侧分量的复杂度不依赖于视觉操作。相反,在OE条件下前后复杂度的增加可能具有统计学意义,从而导致将受试者分为两组:罗姆伯格比率(RRs),即CE测量值与OE测量值的比率,分别为:RR = 1.19 +/- 0.15(第1组受试者),以及RR = 1.05 +/- 0.14(第2组受试者)。将多元统计技术应用于最近提出的姿势摇摆模型的复杂度特征和参数;结果表明,在存在一种控制策略的情况下,复杂度变化是姿势波动信息生成行为的标志,该控制策略旨在在允许视觉反馈时放松长程相关性并降低随机活动。