Suppr超能文献

DNA折叠:染色质双角度模型的结构和力学特性

DNA folding: structural and mechanical properties of the two-angle model for chromatin.

作者信息

Schiessel H, Gelbart W M, Bruinsma R

机构信息

Departments of Physics, University of California, Los Angeles, California 90095, USA.

出版信息

Biophys J. 2001 Apr;80(4):1940-56. doi: 10.1016/S0006-3495(01)76164-4.

Abstract

We present a theoretical analysis of the structural and mechanical properties of the 30-nm chromatin fiber. Our study is based on the two-angle model introduced by Woodcock et al. (Woodcock, C. L., S. A. Grigoryev, R. A. Horowitz, and N. Whitaker. 1993. Proc. Natl. Acad. Sci. USA. 90:9021-9025) that describes the chromatin fiber geometry in terms of the entry-exit angle of the nucleosomal DNA and the rotational setting of the neighboring nucleosomes with respect to each other. We analytically explore the different structures that arise from this building principle, and demonstrate that the geometry with the highest density is close to the one found in native chromatin fibers under physiological conditions. On the basis of this model we calculate mechanical properties of the fiber under stretching. We obtain expressions for the stress-strain characteristics that show good agreement with the results of recent stretching experiments (Cui, Y., and C. Bustamante. 2000. Proc. Natl. Acad. Sci. USA. 97:127-132) and computer simulations (Katritch, V., C. Bustamante, and W. K. Olson. 2000. J. Mol. Biol. 295:29-40), and which provide simple physical insights into correlations between the structural and elastic properties of chromatin.

摘要

我们对30纳米染色质纤维的结构和力学性质进行了理论分析。我们的研究基于伍德科克等人提出的双角度模型(伍德科克,C.L.,S.A.格里戈里耶夫,R.A.霍洛维茨和N.惠特克。1993年。美国国家科学院院刊。90:9021 - 9025),该模型根据核小体DNA的进出角度以及相邻核小体彼此之间的旋转设置来描述染色质纤维的几何形状。我们通过分析探索了由这一构建原理产生的不同结构,并证明密度最高的几何形状接近在生理条件下天然染色质纤维中发现的形状。基于该模型,我们计算了纤维在拉伸时的力学性质。我们得到了应力 - 应变特性的表达式,这些表达式与最近的拉伸实验结果(崔,Y.,和C.布斯塔曼特。2000年。美国国家科学院院刊。97:127 - 132)以及计算机模拟结果(卡特里奇,V.,C.布斯塔曼特,和W.K.奥尔森。2000年。分子生物学杂志。295:29 - 40)吻合良好,并且为染色质的结构和弹性性质之间的相关性提供了简单的物理见解。

相似文献

3
Monte Carlo simulation of chromatin stretching.染色质拉伸的蒙特卡罗模拟
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041927. doi: 10.1103/PhysRevE.73.041927. Epub 2006 Apr 26.
4
A Brownian dynamics model for the chromatin fiber.一种用于染色质纤维的布朗动力学模型。
Comput Appl Biosci. 1997 Jun;13(3):271-9. doi: 10.1093/bioinformatics/13.3.271.
7
Simple combined model for nonlinear excitations in DNA.DNA中非线性激发的简单组合模型。
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 1):021921. doi: 10.1103/PhysRevE.76.021921. Epub 2007 Aug 21.
8
Computational modeling of the chromatin fiber.染色质纤维的计算建模
Semin Cell Dev Biol. 2007 Oct;18(5):659-67. doi: 10.1016/j.semcdb.2007.08.011. Epub 2007 Aug 25.
9
Mechanical model of the nucleosome and chromatin.
J Biomol Struct Dyn. 2002 Apr;19(5):877-87. doi: 10.1080/07391102.2002.10506791.
10
How the chromatin fiber deals with topological constraints.染色质纤维如何应对拓扑限制。
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 1):031910. doi: 10.1103/PhysRevE.71.031910. Epub 2005 Mar 23.

引用本文的文献

6
A Lamin-Associated Chromatin Model for Chromosome Organization.一种用于染色体组织的核纤层相关染色质模型。
Biophys J. 2020 Jun 16;118(12):3041-3050. doi: 10.1016/j.bpj.2020.05.014. Epub 2020 May 20.
7
Genome Dashboards: Framework and Examples.基因组数据看板:框架与实例。
Biophys J. 2020 May 5;118(9):2077-2085. doi: 10.1016/j.bpj.2020.02.018. Epub 2020 Feb 29.

本文引用的文献

2
Self-assembly in vivo.体内自组装。
Biophys J. 2000 May;78(5):2189-90. doi: 10.1016/S0006-3495(00)76767-1.
8
Structure, dynamics, and function of chromatin in vitro.体外染色质的结构、动力学及功能
Annu Rev Biophys Biomol Struct. 1998;27:285-327. doi: 10.1146/annurev.biophys.27.1.285.
9
Driving proteins off DNA using applied tension.利用施加的张力将蛋白质从DNA上分离。
Biophys J. 1997 Oct;73(4):2173-8. doi: 10.1016/S0006-3495(97)78248-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验