Suppr超能文献

细胞器酸度的调节

Regulation of organelle acidity.

作者信息

Grabe M, Oster G

机构信息

Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA.

出版信息

J Gen Physiol. 2001 Apr;117(4):329-44. doi: 10.1085/jgp.117.4.329.

Abstract

Intracellular organelles have characteristic pH ranges that are set and maintained by a balance between ion pumps, leaks, and internal ionic equilibria. Previously, a thermodynamic study by Rybak et al. (Rybak, S., F. Lanni, and R. Murphy. 1997. Biophys. J. 73:674-687) identified the key elements involved in pH regulation; however, recent experiments show that cellular compartments are not in thermodynamic equilibrium. We present here a nonequilibrium model of lumenal acidification based on the interplay of ion pumps and channels, the physical properties of the lumenal matrix, and the organelle geometry. The model successfully predicts experimentally measured steady-state and transient pH values and membrane potentials. We conclude that morphological differences among organelles are insufficient to explain the wide range of pHs present in the cell. Using sensitivity analysis, we quantified the influence of pH regulatory elements on the dynamics of acidification. We found that V-ATPase proton pump and proton leak densities are the two parameters that most strongly influence resting pH. Additionally, we modeled the pH response of the Golgi complex to varying external solutions, and our findings suggest that the membrane is permeable to more than one dominant counter ion. From this data, we determined a Golgi complex proton permeability of 8.1 x 10(-6) cm/s. Furthermore, we analyzed the early-to-late transition in the endosomal pathway where Na,K-ATPases have been shown to limit acidification by an entire pH unit. Our model supports the role of the Na,K-ATPase in regulating endosomal pH by affecting the membrane potential. However, experimental data can only be reproduced by (1) positing the existence of a hypothetical voltage-gated chloride channel or (2) that newly formed vesicles have especially high potassium concentrations and small chloride conductance.

摘要

细胞内细胞器具有特定的pH范围,这些范围是由离子泵、离子泄漏和内部离子平衡之间的平衡设定和维持的。此前,Rybak等人进行的一项热力学研究(Rybak, S., F. Lanni, and R. Murphy. 1997. Biophys. J. 73:674 - 687)确定了参与pH调节的关键因素;然而,最近的实验表明细胞区室并非处于热力学平衡状态。我们在此提出一个基于离子泵和通道的相互作用、腔基质的物理性质以及细胞器几何形状的腔内酸化非平衡模型。该模型成功预测了实验测量的稳态和瞬态pH值以及膜电位。我们得出结论,细胞器之间的形态差异不足以解释细胞中存在的广泛pH值范围。通过敏感性分析,我们量化了pH调节元件对酸化动力学的影响。我们发现V - ATPase质子泵和质子泄漏密度是对静息pH影响最强的两个参数。此外,我们模拟了高尔基体复合体对不同外部溶液的pH响应,我们的研究结果表明该膜对不止一种主要反离子具有通透性。根据这些数据,我们确定高尔基体复合体的质子通透性为8.1×10(-6) cm/s。此外,我们分析了内体途径中早期到晚期的转变,其中已表明钠钾ATP酶将酸化限制了整个pH单位。我们的模型支持钠钾ATP酶通过影响膜电位来调节内体pH的作用。然而,只有通过(1)假定存在一种假设的电压门控氯通道或(2)新形成的囊泡具有特别高的钾浓度和小的氯电导,才能重现实验数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aace/2217256/cd509fbe51f9/JGP8292.f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验