Birner R, Bürgermeister M, Schneiter R, Daum G
Institut für Biochemie, Technische Universität Graz, Austria.
Mol Biol Cell. 2001 Apr;12(4):997-1007. doi: 10.1091/mbc.12.4.997.
Three different pathways lead to the synthesis of phosphatidylethanolamine (PtdEtn) in yeast, one of which is localized to the inner mitochondrial membrane. To study the contribution of each of these pathways, we constructed a series of deletion mutants in which different combinations of the pathways are blocked. Analysis of their growth phenotypes revealed that a minimal level of PtdEtn is essential for growth. On fermentable carbon sources such as glucose, endogenous ethanolaminephosphate provided by sphingolipid catabolism is sufficient to allow synthesis of the essential amount of PtdEtn through the cytidyldiphosphate (CDP)-ethanolamine pathway. On nonfermentable carbon sources, however, a higher level of PtdEtn is required for growth, and the amounts of PtdEtn produced through the CDP-ethanolamine pathway and by extramitochondrial phosphatidylserine decarboxylase 2 are not sufficient to maintain growth unless the action of the former pathway is enhanced by supplementing the growth medium with ethanolamine. Thus, in the absence of such supplementation, production of PtdEtn by mitochondrial phosphatidylserine decarboxylase 1 becomes essential. In psd1Delta strains or cho1Delta strains (defective in phosphatidylserine synthesis), which contain decreased amounts of PtdEtn, the growth rate on nonfermentable carbon sources correlates with the content of PtdEtn in mitochondria, suggesting that import of PtdEtn into this organelle becomes growth limiting. Although morphological and biochemical analysis revealed no obvious defects of PtdEtn-depleted mitochondria, the mutants exhibited an enhanced formation of respiration-deficient cells. Synthesis of glycosylphosphatidylinositol-anchored proteins is also impaired in PtdEtn-depleted cells, as demonstrated by delayed maturation of Gas1p. Carboxypeptidase Y and invertase, on the other hand, were processed with wild-type kinetics. Thus, PtdEtn depletion does not affect protein secretion in general, suggesting that high levels of nonbilayer-forming lipids such as PtdEtn are not essential for membrane vesicle fusion processes in vivo.
在酵母中,有三种不同的途径可导致磷脂酰乙醇胺(PtdEtn)的合成,其中一种定位于线粒体内膜。为了研究这些途径各自的作用,我们构建了一系列缺失突变体,其中不同途径的组合被阻断。对它们生长表型的分析表明,PtdEtn的最低水平对生长至关重要。在可发酵碳源(如葡萄糖)上,鞘脂分解代谢提供的内源性磷酸乙醇胺足以通过胞苷二磷酸(CDP)-乙醇胺途径合成必需量的PtdEtn。然而,在不可发酵碳源上,生长需要更高水平的PtdEtn,并且通过CDP-乙醇胺途径和线粒体外磷脂酰丝氨酸脱羧酶2产生的PtdEtn量不足以维持生长,除非通过在生长培养基中添加乙醇胺来增强前一途径的作用。因此,在没有这种补充的情况下,线粒体磷脂酰丝氨酸脱羧酶1产生PtdEtn就变得至关重要。在PtdEtn含量降低的psd1Δ菌株或cho1Δ菌株(磷脂酰丝氨酸合成有缺陷)中,在不可发酵碳源上的生长速率与线粒体中PtdEtn的含量相关,这表明PtdEtn导入该细胞器成为生长限制因素。尽管形态学和生化分析未发现PtdEtn耗尽的线粒体有明显缺陷,但这些突变体表现出呼吸缺陷细胞的形成增加。如Gas1p成熟延迟所示,在PtdEtn耗尽的细胞中,糖基磷脂酰肌醇锚定蛋白的合成也受到损害。另一方面,羧肽酶Y和转化酶以野生型动力学进行加工。因此,PtdEtn的耗尽一般不会影响蛋白质分泌,这表明高水平的非双层形成脂质(如PtdEtn)在体内对于膜泡融合过程不是必需的。