Suppr超能文献

杨树细胞中多胺代谢的转基因操作。

Transgenic manipulation of the metabolism of polyamines in poplar cells.

作者信息

Bhatnagar P, Glasheen B M, Bains S K, Long S L, Minocha R, Walter C, Minocha S C

机构信息

Department of Plant Biology, University of New Hampshire, Durham, New Hampshire 03824, USA.

出版信息

Plant Physiol. 2001 Apr;125(4):2139-53. doi: 10.1104/pp.125.4.2139.

Abstract

The metabolism of polyamines (putrescine, spermidine, and spermine) has become the target of genetic manipulation because of their significance in plant development and possibly stress tolerance. We studied the polyamine metabolism in non-transgenic (NT) and transgenic cells of poplar (Populus nigra x maximowiczii) expressing a mouse Orn decarboxylase (odc) cDNA. The transgenic cells showed elevated levels of mouse ODC enzyme activity, severalfold higher amounts of putrescine, a small increase in spermidine, and a small reduction in spermine as compared with NT cells. The conversion of labeled ornithine (Orn) into putrescine was significantly higher in the transgenic than the NT cells. Whereas exogenously supplied Orn caused an increase in cellular putrescine in both cell lines, arginine at high concentrations was inhibitory to putrescine accumulation. The addition of urea and glutamine had no effect on polyamines in either of the cell lines. Inhibition of glutamine synthetase by methionine sulfoximine led to a substantial reduction in putrescine and spermidine in both cell lines. The results show that: (a) Transgenic expression of a heterologous odc gene can be used to modulate putrescine metabolism in plant cells, (b) accumulation of putrescine in high amounts does not affect the native arginine decarboxylase activity, (c) Orn biosynthesis occurs primarily from glutamine/glutamate and not from catabolic breakdown of arginine, (d) Orn biosynthesis may become a limiting factor for putrescine production in the odc transgenic cells, and (e) assimilation of nitrogen into glutamine keeps pace with an increased demand for its use for putrescine production.

摘要

由于多胺(腐胺、亚精胺和精胺)在植物发育以及可能的胁迫耐受性方面具有重要意义,其代谢已成为基因操作的目标。我们研究了表达小鼠鸟氨酸脱羧酶(odc)cDNA的杨树(黑杨×大青杨)非转基因(NT)细胞和转基因细胞中的多胺代谢。与NT细胞相比,转基因细胞显示出小鼠ODC酶活性水平升高,腐胺含量增加了几倍,亚精胺略有增加,精胺略有减少。转基因细胞中标记的鸟氨酸(Orn)向腐胺的转化明显高于NT细胞。虽然外源供应的Orn在两种细胞系中均导致细胞内腐胺增加,但高浓度的精氨酸对腐胺积累具有抑制作用。添加尿素和谷氨酰胺对两种细胞系中的多胺均无影响。甲硫氨酸亚砜亚胺对谷氨酰胺合成酶的抑制导致两种细胞系中腐胺和亚精胺大幅减少。结果表明:(a)异源odc基因的转基因表达可用于调节植物细胞中的腐胺代谢;(b)大量腐胺的积累不影响天然精氨酸脱羧酶活性;(c)Orn生物合成主要来自谷氨酰胺/谷氨酸,而非精氨酸的分解代谢;(d)Orn生物合成可能成为odc转基因细胞中腐胺产生的限制因素;(e)氮同化为谷氨酰胺与腐胺生产对其使用需求的增加保持同步。

相似文献

1
Transgenic manipulation of the metabolism of polyamines in poplar cells.
Plant Physiol. 2001 Apr;125(4):2139-53. doi: 10.1104/pp.125.4.2139.
4
Genetic manipulation of putrescine biosynthesis reprograms the cellular transcriptome and the metabolome.
BMC Plant Biol. 2016 May 18;16(1):113. doi: 10.1186/s12870-016-0796-2.
5
Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids.
Amino Acids. 2010 Apr;38(4):1117-29. doi: 10.1007/s00726-009-0322-z. Epub 2009 Aug 1.
7
Polyamines and the integrity of the plant body.
Acta Univ Agric Fac Agron. 1985;33(3):115-9.

引用本文的文献

1
Application of metabolic engineering to enhance the content of alkaloids in medicinal plants.
Metab Eng Commun. 2022 Feb 16;14:e00194. doi: 10.1016/j.mec.2022.e00194. eCollection 2022 Jun.
2
Novel resistance strategies to soybean cyst nematode (SCN) in wild soybean.
Sci Rep. 2021 Apr 12;11(1):7967. doi: 10.1038/s41598-021-86793-z.
3
Concurrent Overexpression of and Genes in Transgenic Rice ( L.): Impact on Tolerance to Abiotic Stresses.
Front Plant Sci. 2018 Jun 21;9:786. doi: 10.3389/fpls.2018.00786. eCollection 2018.
6
Transcriptome response and developmental implications of RNAi-mediated ODC knockdown in tobacco.
Funct Integr Genomics. 2017 Jul;17(4):399-412. doi: 10.1007/s10142-016-0539-3. Epub 2016 Dec 24.
7
Genetic manipulation of putrescine biosynthesis reprograms the cellular transcriptome and the metabolome.
BMC Plant Biol. 2016 May 18;16(1):113. doi: 10.1186/s12870-016-0796-2.
9
Polyamines and abiotic stress in plants: a complex relationship.
Front Plant Sci. 2014 May 5;5:175. doi: 10.3389/fpls.2014.00175. eCollection 2014.

本文引用的文献

1
Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don.
Plant Cell Rep. 1998 Apr;17(6-7):460-468. doi: 10.1007/s002990050426.
3
Polyamines in embryogenic cultures of Norway spruce (Picea abies) and red spruce (Picea rubens).
Tree Physiol. 1993 Dec;13(4):365-77. doi: 10.1093/treephys/13.4.365.
5
The ethylene response pathway in Arabidopsis.
Annu Rev Plant Physiol Plant Mol Biol. 1997;48:277-96. doi: 10.1146/annurev.arplant.48.1.277.
6
Metabolism and functions of gamma-aminobutyric acid.
Trends Plant Sci. 1999 Nov;4(11):446-452. doi: 10.1016/s1360-1385(99)01486-7.
7
9
Metabolic engineering of plants for osmotic stress resistance.
Curr Opin Plant Biol. 1999 Apr;2(2):128-34. doi: 10.1016/s1369-5266(99)80026-0.
10
Manipulating flux through plant metabolic pathways.
Curr Opin Plant Biol. 1998 Apr;1(2):173-8. doi: 10.1016/s1369-5266(98)80021-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验