Suppr超能文献

用于逼真头部形状的快速可重新计算的脑电图正向模型。

Rapidly recomputable EEG forward models for realistic head shapes.

作者信息

Ermer J J, Mosher J C, Baillet S, Leah R M

机构信息

Signal & Image Processing Institute, University of Southern California, Los Angeles 90089-2564, USA.

出版信息

Phys Med Biol. 2001 Apr;46(4):1265-81. doi: 10.1088/0031-9155/46/4/324.

Abstract

With the increasing availability of surface extraction techniques for magnetic resonance and x-ray computed tomography images, realistic head models can be readily generated as forward models in the analysis of electroencephalography (EEG) and magnetoencephalography (MEG) data. Inverse analysis of this data, however, requires that the forward model be computationally efficient. We propose two methods for approximating the EEG forward model using realistic head shapes. The 'sensor-fitted sphere' approach fits a multilayer sphere individually to each sensor, and the 'three-dimensional interpolation' scheme interpolates using a grid on which a numerical boundary element method (BEM) solution has been precomputed. We have characterized the performance of each method in terms of magnitude and subspace error metrics, as well as computational and memory requirements. We have also made direct performance comparisons with traditional spherical models. The approximation provided by the interpolative scheme had an accuracy nearly identical to full BEM, even within 3 mm of the inner skull surface. Forward model computation during inverse procedures was approximately 30 times faster than for a traditional three-shell spherical model. Cast in this framework, high-fidelity numerical solutions currently viewed as computationally prohibitive for solving the inverse problem (e.g. linear Galerkin BEM) can be rapidly recomputed in a highly efficient manner. The sensor-fitting method has a similar one-time cost to the BEM method, and while it produces some improvement over a standard three-shell sphere, its performance does not approach that of the interpolation method. In both methods, there is a one-time cost associated with precomputing the forward solution over a set of grid points.

摘要

随着磁共振和X射线计算机断层扫描图像表面提取技术的日益普及,在脑电图(EEG)和脑磁图(MEG)数据分析中,可以很容易地生成逼真的头部模型作为正向模型。然而,对这些数据进行逆分析要求正向模型具有较高的计算效率。我们提出了两种使用逼真头部形状来近似EEG正向模型的方法。“传感器拟合球体”方法为每个传感器分别拟合一个多层球体,“三维插值”方案则使用一个预先计算了数值边界元法(BEM)解的网格进行插值。我们从幅值和子空间误差指标以及计算和内存需求方面对每种方法的性能进行了表征。我们还与传统的球形模型进行了直接的性能比较。插值方案提供的近似值即使在内颅骨表面3毫米范围内,其精度也几乎与完整的BEM相同。逆过程中的正向模型计算比传统的三壳球形模型快约30倍。在这个框架下,目前被认为在计算上难以求解逆问题的高保真数值解(例如线性伽辽金BEM)可以以高效的方式快速重新计算。传感器拟合方法的一次性成本与BEM方法类似,虽然它比标准的三壳球体有一些改进,但其性能不如插值方法。在这两种方法中,都有与在一组网格点上预先计算正向解相关的一次性成本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验