Semple S C, Klimuk S K, Harasym T O, Dos Santos N, Ansell S M, Wong K F, Maurer N, Stark H, Cullis P R, Hope M J, Scherrer P
Inex Pharmaceutical Corp., Burnaby, B.C., Canada.
Biochim Biophys Acta. 2001 Feb 9;1510(1-2):152-66. doi: 10.1016/s0005-2736(00)00343-6.
Typical methods used for encapsulating antisense oligodeoxynucleotides (ODN) and plasmid DNA in lipid vesicles result in very low encapsulation efficiencies or employ cationic lipids that exhibit unfavorable pharmacokinetic and toxicity characteristics when administered intravenously. In this study, we describe and characterize a novel formulation process that utilizes an ionizable aminolipid (1,2-dioleoyl-3-dimethylammonium propane, DODAP) and an ethanol-containing buffer system for encapsulating large quantities (0.15--0.25 g ODN/g lipid) of polyanionic ODN in lipid vesicles. This process requires the presence of up to 40% ethanol (v/v) and initial formulation at acidic pH values where the DODAP is positively charged. In addition, the presence of a poly(ethylene glycol)-lipid was required during the formulation process to prevent aggregation. The 'stabilized antisense-lipid particles' (SALP) formed are stable on adjustment of the external pH to neutral pH values and the formulation process allows encapsulation efficiencies of up to 70%. ODN encapsulation was confirmed by nuclease protection assays and (31)P NMR measurements. Cryo-electron microscopy indicated that the final particles consisted of a mixed population of unilamellar and small multilamellar vesicles (80--140 nm diameter), the relative proportion of which was dependent on the initial ODN to lipid ratio. Finally, SALP exhibited significantly enhanced circulation lifetimes in mice relative to free antisense ODN, cationic lipid/ODN complexes and SALP prepared with quaternary aminolipids. Given the small particle sizes and improved encapsulation efficiency, ODN to lipid ratios, and circulation times of this formulation compared to others, we believe SALP represent a viable candidate for systemic applications involving nucleic acid therapeutics.
用于将反义寡脱氧核苷酸(ODN)和质粒DNA包裹于脂质囊泡中的典型方法,其包封效率非常低,或者使用的阳离子脂质在静脉给药时表现出不良的药代动力学和毒性特征。在本研究中,我们描述并表征了一种新型的制剂工艺,该工艺利用一种可电离的氨基脂质(1,2 - 二油酰基 - 3 - 二甲基铵丙烷,DODAP)和一种含乙醇的缓冲系统,用于在脂质囊泡中包裹大量(0.15 - 0.25 g ODN/g脂质)的聚阴离子ODN。该工艺需要高达40%(v/v)的乙醇存在,并且在酸性pH值下进行初始制剂,此时DODAP带正电荷。此外,在制剂过程中需要聚乙二醇 - 脂质的存在以防止聚集。形成的“稳定化反义脂质颗粒”(SALP)在将外部pH调节至中性pH值时是稳定的,并且该制剂工艺允许高达70%的包封效率。通过核酸酶保护试验和³¹P NMR测量证实了ODN的包裹。冷冻电子显微镜表明,最终颗粒由单层和小多层囊泡(直径80 - 140 nm)的混合群体组成,其相对比例取决于初始ODN与脂质的比例。最后,相对于游离反义ODN、阳离子脂质/ODN复合物以及用季铵氨基脂质制备的SALP,SALP在小鼠体内表现出显著延长的循环寿命。鉴于与其他制剂相比,该制剂的颗粒尺寸小、包封效率提高、ODN与脂质比例合适且循环时间延长,我们认为SALP是涉及核酸治疗的全身应用的可行候选物。