Salli E, Aronen H J, Savolainen S, Korvenoja A, Visa A
Laboratory of Biomedical Engineering, Helsinki University of Technology, Espoo, Finland.
IEEE Trans Med Imaging. 2001 May;20(5):403-14. doi: 10.1109/42.925293.
We present a contextual clustering procedure for statistical parametric maps (SPM) calculated from time varying three-dimensional images. The algorithm can be used for the detection of neural activations from functional magnetic resonance images (fMRI). An important characteristic of SPM is that the intensity distribution of background (nonactive area) is known whereas the distributions of activation areas are not. The developed contextual clustering algorithm divides an SPM into background and activation areas so that the probability of detecting false activations by chance is controlled, i.e., hypothesis testing is performed. Unlike the much used voxel-by-voxel testing, neighborhood information is utilized, an important difference. This is achieved by using a Markov random field prior and iterated conditional modes (ICM) algorithm. However, unlike in the conventional use of ICM algorithm, the classification is based only on the distribution of background. The results from our simulations and human fMRI experiments using visual stimulation demonstrate that a better sensitivity is achieved with a given specificity in comparison to the voxel-by-voxel thresholding technique. The algorithm is computationally efficient and can be used to detect and delineate objects from a noisy background in other applications.
我们提出了一种针对从随时间变化的三维图像计算得到的统计参数映射(SPM)的上下文聚类方法。该算法可用于从功能磁共振成像(fMRI)中检测神经激活。SPM的一个重要特征是背景(非激活区域)的强度分布是已知的,而激活区域的分布则未知。所开发的上下文聚类算法将SPM划分为背景和激活区域,从而控制偶然检测到假激活的概率,即进行假设检验。与常用的逐体素测试不同,该算法利用了邻域信息,这是一个重要的区别。这是通过使用马尔可夫随机场先验和迭代条件模式(ICM)算法实现的。然而,与ICM算法的传统用法不同,分类仅基于背景的分布。我们使用视觉刺激进行的模拟和人类fMRI实验结果表明,与逐体素阈值技术相比,在给定的特异性下可以实现更好的敏感性。该算法计算效率高,可用于在其他应用中从嘈杂背景中检测和描绘物体。