Ross S T, Soltesz I
Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1280, USA.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8874-9. doi: 10.1073/pnas.141042398. Epub 2001 Jul 3.
Single interneurons influence thousands of postsynaptic principal cells, and the control of interneuronal excitability is an important regulator of the computational properties of the hippocampus. However, the mechanisms underlying long-term alterations in the input-output functions of interneurons are not fully understood. We report a mechanism of interneuronal plasticity that leads to the functional enhancement of the gain of glutamatergic inputs in the absence of long-term potentiation of the excitatory synaptic currents. Interneurons in the dentate gyrus exhibit a characteristic, limited (approximately 8 mV) depolarization of their resting membrane potential after high-frequency stimulation of the perforant path. The depolarization can be observed with either whole-cell or perforated patch electrodes, and it lasts in excess of 3 h. The long-term depolarization is specific to interneurons, because granule cells do not show it. The depolarization requires the activation of Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the rise of intracellular Ca(2+), but not N-methyl-d-aspartate (NMDA) receptor activation. Data on the maintenance of the depolarization point to a major role for a long-term change in the rate of electrogenic Na(+)/K(+)-ATPase pump function in interneurons. As a result of the depolarization, interneurons after the tetanus respond with action potential discharges to previously subthreshold excitatory postsynaptic potentials (EPSPs), even though the EPSPs are not potentiated. These results demonstrate that the plastic nature of the interneuronal resting membrane potential underlies a unique form of long-term regulation of the gain of excitatory inputs to gamma-aminobutyric acid (GABA)ergic neurons.
单个中间神经元可影响数千个突触后主细胞,而中间神经元兴奋性的控制是海马体计算特性的重要调节因素。然而,中间神经元输入-输出功能长期改变的潜在机制尚未完全明确。我们报告了一种中间神经元可塑性机制,该机制在兴奋性突触电流无长期增强的情况下,导致谷氨酸能输入增益的功能增强。在对穿通路径进行高频刺激后,齿状回中的中间神经元静息膜电位会出现特征性的、有限的(约8 mV)去极化。使用全细胞膜片钳或穿孔膜片钳电极均可观察到这种去极化,且持续超过3小时。这种长期去极化是中间神经元特有的,因为颗粒细胞未表现出这种现象。去极化需要激活Ca(2+)通透的α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体以及细胞内Ca(2+)升高,但不需要N-甲基-D-天冬氨酸(NMDA)受体激活。关于去极化维持的数据表明,中间神经元中电生Na(+)/K(+)-ATP酶泵功能速率的长期变化起主要作用。由于去极化,强直刺激后的中间神经元对先前阈下兴奋性突触后电位(EPSP)会产生动作电位发放,即便EPSP并未增强。这些结果表明,中间神经元静息膜电位的可塑性是对γ-氨基丁酸(GABA)能神经元兴奋性输入增益进行独特形式长期调节的基础。