Taube A, Malmquist J
Institutionen för informationsvetenskap, Uppsala universitet.
Lakartidningen. 2001 Jun 13;98(24):2910-3.
Bayesian analysis of data finds increasing use in medical statistics, diagnostic evaluation and decision analysis. The central element in bayesian analysis is a set of mathematical rules for integrated evaluation of prior knowledge and new information. In many situations this approach has superior ability to deliver dependable updated knowledge and to provide an optimal probability basis for decisions. This article (the first of two) presents Bayes' theorem and its application in diagnostic work. It is explained how likelihood ratios of diagnostic tests interact with the outcome of such tests in the conversion of initial information (prior odds) to enhanced information (posterior odds).
贝叶斯数据分析在医学统计学、诊断评估和决策分析中的应用日益广泛。贝叶斯分析的核心要素是一套用于综合评估先验知识和新信息的数学规则。在许多情况下,这种方法在提供可靠的更新知识以及为决策提供最佳概率基础方面具有卓越能力。本文(两篇中的第一篇)介绍了贝叶斯定理及其在诊断工作中的应用。文中解释了诊断测试的似然比如何在将初始信息(先验概率)转换为增强信息(后验概率)的过程中与测试结果相互作用。