Thoden van Velzen S K, Duivenvoorden H J, Schuurs A H
Oral Surg Oral Med Oral Pathol. 1981 Jul;52(1):85-90. doi: 10.1016/0030-4220(81)90178-x.
Bayes' theorem provides a mathematical rule for changing a (prior) probability into a new (posterior) probability incorporating additional information. Application of the theorem is a way to overcome some limitations that the human mind has in processing information. A Bayesian approach is useful for the processing of data and as a tool for decision making. Bayes' theorem is expounded, and examples are given of the use of the theorem for computing the odds on success or failure of endodontic treatment of a tooth, given a particular preoperative status and given also the results of the preparation and filling of the root canal of the tooth in question. Application of Bayes' theorem using data collected provides an insight based upon probabilities and odds in the way preoperative conditions and operative results affect the ultimate treatment result.
贝叶斯定理提供了一个将(先验)概率转换为包含额外信息的新(后验)概率的数学规则。该定理的应用是克服人类思维在处理信息时存在的一些局限性的一种方法。贝叶斯方法对于数据处理和作为决策工具很有用。阐述了贝叶斯定理,并给出了在给定特定术前状态以及所讨论牙齿根管预备和充填结果的情况下,使用该定理计算牙齿根管治疗成功或失败几率的示例。使用收集到的数据应用贝叶斯定理,基于术前状况和手术结果影响最终治疗结果的概率和几率,提供了一种见解。