Limburg J, Vrettos J S, Chen H, de Paula J C, Crabtree R H, Brudvig G W
Contribution from the Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut, 06520-8107, USA.
J Am Chem Soc. 2001 Jan 24;123(3):423-30. doi: 10.1021/ja001090a.
The complex (terpy)(H(2)O)Mn(III)(O)(2)Mn(IV)(OH(2))(terpy)(3) (terpy = 2,2':6,2' '-terpyridine) (1)catalyzes O(2) evolution from either KHSO(5) (potassium oxone) or NaOCl. The reactions follow Michaelis-Menten kinetics where V(max) = 2420 +/- 490 mol O(2) (mol 1)(-1) hr(-1) and K(M) = 53 +/- 5 mM for oxone ([1] = 7.5 microM), and V(max) = 6.5 +/- 0.3 mol O(2) (mol 1)(-1) hr(-1) and K(M) = 39 +/- 4 mM for hypochlorite ([1] = 70 microM), with first-order kinetics observed in 1 for both oxidants. A mechanism is proposed having a preequilibrium between 1 and HSO(5-) or OCl(-), supported by the isolation and structural characterization of [(terpy)(SO(4))Mn(IV)(O)(2)Mn(IV)(O(4)S)(terpy)] (2). Isotope-labeling studies using H(2)(18)O and KHS(16)O(5) show that O(2) evolution proceeds via an intermediate that can exchange with water, where Raman spectroscopy has been used to confirm that the active oxygen of HSO(5-) is nonexchanging (t(1/2) >> 1 h). The amount of label incorporated into O(2) is dependent on the relative concentrations of oxone and 1. (32)O(2):(34)O(2):(36)O(2) is 91.9 +/- 0.3:7.6 +/- 0.3:0.51 +/- 0.48, when [HSO(5-)] = 50 mM (0.5 mM 1), and 49 +/- 21:39 +/- 15:12 +/- 6 when [HSO(5-)] = 15 mM (0.75 mM 1). The rate-limiting step of O(2) evolution is proposed to be formation of a formally Mn(V)=O moiety which could then competitively react with either oxone or water/hydroxide to produce O(2). These results show that 1 serves as a functional model for photosynthetic water oxidation.
配合物(terpy)(H₂O)Mn(III)(O)₂Mn(IV)(OH₂)(terpy)₃(terpy = 2,2':6,2''-三联吡啶)(1)催化过硫酸氢钾(过一硫酸钾)或次氯酸钠产生氧气。反应遵循米氏动力学,对于过一硫酸钾([1] = 7.5 μM),V(max) = 2420 ± 490 μmol O₂ (mol⁻¹) h⁻¹,K(M) = 53 ± 5 mM;对于次氯酸盐([1] = 70 μM),V(max) = 6.5 ± 0.3 μmol O₂ (mol⁻¹) h⁻¹,K(M) = 39 ± 4 mM,两种氧化剂的反应对1均表现为一级动力学。提出了一种机制,即在1与HSO₅⁻或OCl⁻之间存在预平衡,这一机制得到了[(terpy)(SO₄)Mn(IV)(O)₂Mn(IV)(O₄S)(terpy)](2)的分离和结构表征的支持。使用H₂¹⁸O和KHS¹⁶O₅进行的同位素标记研究表明,氧气的产生通过一个可与水交换的中间体进行,其中拉曼光谱已用于证实HSO₅⁻的活性氧不发生交换(半衰期>> 1小时)。掺入氧气中的标记量取决于过一硫酸钾和1的相对浓度。当[HSO₅⁻] = 50 mM(0.5 mM 1)时,³²O₂:³⁴O₂:³⁶O₂为91.9 ± 0.3:7.6 ± 0.3:0.51 ± 0.48;当[HSO₅⁻] = 15 mM(0.75 mM 1)时,³²O₂:³⁴O₂:³⁶O₂为49 ± 21:39 ± 15:12 ± 6。氧气产生的限速步骤被认为是正式的Mn(V)=O部分的形成,然后它可以与过一硫酸钾或水/氢氧根发生竞争性反应以产生氧气。这些结果表明1可作为光合水氧化的功能模型。