Suppr超能文献

基于有限元法的脑电图源分析中不同潜在方法和迭代求解器的准确性与运行时间比较

Accuracy and run-time comparison for different potential approaches and iterative solvers in finite element method based EEG source analysis.

作者信息

Lew S, Wolters C H, Dierkes T, Röer C, Macleod R S

机构信息

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA.

出版信息

Appl Numer Math. 2009 Aug;59(8):1970-1988. doi: 10.1016/j.apnum.2009.02.006.

Abstract

Accuracy and run-time play an important role in medical diagnostics and research as well as in the field of neuroscience. In Electroencephalography (EEG) source reconstruction, a current distribution in the human brain is reconstructed noninvasively from measured potentials at the head surface (the EEG inverse problem). Numerical modeling techniques are used to simulate head surface potentials for dipolar current sources in the human cortex, the so-called EEG forward problem.In this paper, the efficiency of algebraic multigrid (AMG), incomplete Cholesky (IC) and Jacobi preconditioners for the conjugate gradient (CG) method are compared for iteratively solving the finite element (FE) method based EEG forward problem. The interplay of the three solvers with a full subtraction approach and two direct potential approaches, the Venant and the partial integration method for the treatment of the dipole singularity is examined. The examination is performed in a four-compartment sphere model with anisotropic skull layer, where quasi-analytical solutions allow for an exact quantification of computational speed versus numerical error. Specifically-tuned constrained Delaunay tetrahedralization (CDT) FE meshes lead to high accuracies for both the full subtraction and the direct potential approaches. Best accuracies are achieved by the full subtraction approach if the homogeneity condition is fulfilled. It is shown that the AMG-CG achieves an order of magnitude higher computational speed than the CG with the standard preconditioners with an increasing gain factor when decreasing mesh size. Our results should broaden the application of accurate and fast high-resolution FE volume conductor modeling in source analysis routine.

摘要

准确性和运行时间在医学诊断与研究以及神经科学领域中都起着重要作用。在脑电图(EEG)源重建中,人脑内的电流分布是根据头部表面测量到的电位进行非侵入性重建的(EEG逆问题)。数值建模技术用于模拟人类皮层中偶极电流源的头部表面电位,即所谓的EEG正问题。本文比较了代数多重网格(AMG)、不完全Cholesky(IC)和雅可比预处理器用于共轭梯度(CG)法迭代求解基于有限元(FE)法的EEG正问题的效率。研究了这三种求解器与全减法方法以及两种直接电位方法(用于处理偶极奇点的韦南特方法和部分积分方法)之间的相互作用。该研究在具有各向异性颅骨层的四室球体模型中进行,其中准解析解允许精确量化计算速度与数值误差。经过特殊调整的约束Delaunay四面体化(CDT)有限元网格在全减法和直接电位方法中都能实现高精度。如果满足均匀性条件,全减法方法可实现最佳精度。结果表明,随着网格尺寸减小,AMG - CG比使用标准预处理器的CG计算速度提高了一个数量级,且增益因子不断增加。我们的结果应能拓宽精确快速的高分辨率有限元容积导体建模在源分析日常工作中的应用。

相似文献

5
The multipole approach for EEG forward modeling using the finite element method.基于有限元法的 EEG 正向建模的多极方法。
Neuroimage. 2019 Nov 1;201:116039. doi: 10.1016/j.neuroimage.2019.116039. Epub 2019 Jul 29.
6
10
CutFEM forward modeling for EEG source analysis.用于脑电图源分析的CutFEM正向建模
Front Hum Neurosci. 2023 Aug 22;17:1216758. doi: 10.3389/fnhum.2023.1216758. eCollection 2023.

引用本文的文献

4
A systematic comparison between FEBio and PolyFEM for biomechanical systems.FEBio 和 PolyFEM 在生物力学系统中的系统比较。
Comput Methods Programs Biomed. 2024 Feb;244:107938. doi: 10.1016/j.cmpb.2023.107938. Epub 2023 Nov 29.
6
CutFEM forward modeling for EEG source analysis.用于脑电图源分析的CutFEM正向建模
Front Hum Neurosci. 2023 Aug 22;17:1216758. doi: 10.3389/fnhum.2023.1216758. eCollection 2023.
8
Influence of unfused cranial bones on magnetoencephalography signals in human infants.颅骨未融合对婴儿脑磁图信号的影响。
Clin Neurophysiol. 2021 Mar;132(3):708-719. doi: 10.1016/j.clinph.2020.11.036. Epub 2020 Dec 30.
9
Interactive computation and visualization of deep brain stimulation effects using Duality.使用对偶性对深部脑刺激效果进行交互式计算和可视化。
Comput Methods Biomech Biomed Eng Imaging Vis. 2020;8(1):3-14. doi: 10.1080/21681163.2018.1484817. Epub 2019 Jul 2.

本文引用的文献

7
Dipole models for the EEG and MEG.脑电图(EEG)和脑磁图(MEG)的偶极子模型
IEEE Trans Biomed Eng. 2002 May;49(5):409-18. doi: 10.1109/10.995679.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验