Friston K J, Price C J
The Wellcome Department of Cognitive Neurology, Institute of Neurology, London, UK.
Scand J Psychol. 2001 Jul;42(3):167-77. doi: 10.1111/1467-9450.00228.
The representational capacity and inherent function of any neuron, neuronal population or cortical area in the brain is dynamic and context-sensitive. Functional integration, or interactions among brain systems, that employ driving (bottom up) and backward (top-down) connections, mediate this adaptive and contextual specialisation. A critical consequence is that neuronal responses, in any given cortical area, can represent different things at different times. This can have fundamental implications for the design of brain imaging experiments and the interpretation of their results. Our arguments are developed under generative models of brain function, where higher-level systems provide a prediction of the inputs to lower-level regions. Conflict between the two is resolved by changes in the higher-level representations, which are driven by the ensuing error in lower regions, until the mismatch is "cancelled". From this perspective the specialisation of any region is determined both by bottom-up driving inputs and by top-down predictions. Specialisation is therefore not an intrinsic property of any region but depends on both forward and backward connections with other areas. Because the latter have access to the context in which the inputs are generated they are in a position to modulate the selectivity or specialisation of lower areas. The implications for classical models (e.g., classical receptive fields in electrophysiology, classical specialisation in neuroimaging and connectionism in cognitive models) are severe and suggest these models may provide incomplete accounts of real brain architectures. Here we focus on the implications for cognitive neuroscience in the context of neuroimaging.
大脑中任何神经元、神经元群体或皮层区域的表征能力和固有功能都是动态的且依赖于上下文。利用驱动(自下而上)和反向(自上而下)连接的大脑系统之间的功能整合或相互作用介导了这种适应性和上下文特异性。一个关键的结果是,在任何给定的皮层区域,神经元反应在不同时间可以代表不同的事物。这可能对脑成像实验的设计及其结果的解释产生根本性影响。我们的观点是在大脑功能的生成模型下展开的,其中高级系统对低级区域的输入进行预测。两者之间的冲突通过高级表征的变化来解决,这种变化由低级区域随之产生的误差驱动,直到不匹配被“消除”。从这个角度来看,任何区域的特异性既由自下而上的驱动输入决定,也由自上而下的预测决定。因此,特异性不是任何区域的固有属性,而是取决于与其他区域的前向和反向连接。因为后者能够获取输入产生的上下文,所以它们能够调节低级区域的选择性或特异性。这对经典模型(例如,电生理学中的经典感受野、神经成像中的经典特异性以及认知模型中的联结主义)的影响很大,表明这些模型可能无法完整地解释真实的大脑结构。在这里,我们关注在神经成像背景下对认知神经科学的影响。