Wendling F, Bellanger J J, Bartolomei F, Chauvel P
Laboratoire Traitement du Signal et de L'Image, INSERM Université de Rennes 1, France.
Biol Cybern. 2000 Oct;83(4):367-78. doi: 10.1007/s004220000160.
In the field of epilepsy, the analysis of stereoelectroencephalographic (SEEG, intra-cerebral recording) signals with signal processing methods can help to better identify the epileptogenic zone, the area of the brain responsible for triggering seizures, and to better understand its organization. In order to evaluate these methods and to physiologically interpret the results they provide, we developed a model able to produce EEG signals from "organized" networks of neural populations. Starting from a neurophysiologically relevant model initially proposed by Lopes Da Silva et al. [Lopes da Silva FH, Hoek A, Smith H, Zetterberg LH (1974) Kybernetic 15: 27-37] and recently re-designed by Jansen et al. [Jansen BH, Zouridakis G, Brandt ME (1993) Biol Cybern 68: 275 283] the present study demonstrates that this model can be extended to generate spontaneous EEG signals from multiple coupled neural populations. Model parameters related to excitation, inhibition and coupling are then altered to produce epileptiform EEG signals. Results show that the qualitative behavior of the model is realistic; simulated signals resemble those recorded from different brain structures for both interictal and ictal activities. Possible exploitation of simulations in signal processing is illustrated through one example; statistical couplings between both simulated signals and real SEEG signals are estimated using nonlinear regression. Results are compared and show that, through the model, real SEEG signals can be interpreted with the aid of signal processing methods.
在癫痫领域,运用信号处理方法分析立体脑电图(SEEG,脑内记录)信号,有助于更好地识别癫痫病灶区,即大脑中引发癫痫发作的区域,并更好地理解其组织结构。为了评估这些方法并从生理学角度解释它们所提供的结果,我们开发了一个能够从神经群体的“有组织”网络中产生脑电图信号的模型。本研究以最初由洛佩斯·达席尔瓦等人[洛佩斯·达席尔瓦FH、赫克A、史密斯H、泽特贝里LH(1974年)《控制论》15卷:27 - 37页]提出、最近由扬森等人[扬森BH、祖里达基斯G、布兰特ME(1993年)《生物控制论》68卷:275 - 283页]重新设计的一个与神经生理学相关的模型为基础,证明了该模型可以扩展为从多个耦合神经群体中产生自发脑电图信号。然后改变与兴奋、抑制和耦合相关的模型参数,以产生癫痫样脑电图信号。结果表明,该模型的定性行为是现实的;模拟信号在发作间期和发作期活动方面都类似于从不同脑结构记录到的信号。通过一个例子说明了在信号处理中对模拟结果的可能应用;使用非线性回归估计模拟信号与真实SEEG信号之间的统计耦合。对结果进行了比较,结果表明,通过该模型,可以借助信号处理方法对真实的SEEG信号进行解释。