Thomas S T, Loladze V V, Makhatadze G I
Department of Biochemistry and Molecular Biology, Penn State University, College of Medicine, Hershey, PA 17033, USA.
Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10670-5. doi: 10.1073/pnas.191381798. Epub 2001 Sep 4.
The C' position of the C-capping box is the second residue outside of the helix. Statistical analysis of residue distribution at the C' position in the alpha-helices' C-capping box showed that different amino acid residues occur with different probabilities, with the strongest preference being for glycine. To understand the physico-chemical basis for this preference, we studied the effects that 17 amino acid substitutions at the C' position in an alpha-helix of ubiquitin have on the stability of this protein. We determined the following rank order of amino acid residues at the C' position with respect to their effect on the stability: Gly>His>Asn>Arg>Lys>Gln>Ala>Phe>Met>Ser>Asp>Glu>Trp>Thr>Pro>Ile>Val. The effect of the amino acid substitutions on the structure also was evaluated by comparing the (1)H-(15)N heteronuclear sequential quantum correlation spectra and showed no significant changes in the structures of the most stable (Gly) and the least stable (Val) variants. The obtained changes in stability highly correlate (r = 0.85) with the statistical distribution of the residues at the C' position indicating that the measured thermodynamic propensities are unbiased by secondary interactions. We also found that the measured thermodynamic propensities correlate well with the amide hydrogen exchange data on short model peptides (r = 0.85) and the calculated hydration of the peptide backbone (r = 0.88). These results combined with the changes in enthalpy and entropy of unfolding of ubiquitin variants suggest that dehydration of the peptide backbone plays a significant role in defining the thermodynamic propensity scale at the C' position of the C-capping box in alpha-helices. This propensity scale is useful for protein secondary structure predictions and protein design.
C 端封端盒的 C' 位置是螺旋外的第二个残基。对 α 螺旋 C 端封端盒中 C' 位置的残基分布进行统计分析表明,不同氨基酸残基出现的概率不同,其中对甘氨酸的偏好最强。为了解这种偏好的物理化学基础,我们研究了泛素 α 螺旋中 C' 位置的 17 种氨基酸取代对该蛋白质稳定性的影响。我们确定了 C' 位置氨基酸残基对稳定性影响的以下排序:甘氨酸>组氨酸>天冬酰胺>精氨酸>赖氨酸>谷氨酰胺>丙氨酸>苯丙氨酸>甲硫氨酸>丝氨酸>天冬氨酸>谷氨酸>色氨酸>苏氨酸>脯氨酸>异亮氨酸>缬氨酸。通过比较(1)H -(15)N 异核序列量子相关光谱,还评估了氨基酸取代对结构的影响,结果表明最稳定(甘氨酸)和最不稳定(缬氨酸)变体的结构没有显著变化。所获得的稳定性变化与 C' 位置残基的统计分布高度相关(r = 0.85),表明所测量的热力学倾向不受二级相互作用的影响。我们还发现,所测量的热力学倾向与短模型肽的酰胺氢交换数据(r = 0.85)和肽主链的计算水合作用(r = 0.88)密切相关。这些结果与泛素变体解折叠的焓和熵的变化相结合,表明肽主链的脱水在定义 α 螺旋 C 端封端盒 C' 位置的热力学倾向标度中起重要作用。这种倾向标度对于蛋白质二级结构预测和蛋白质设计很有用。