Suppr超能文献

黏液虫巨型轴突表面电荷的大小和位置。

Magnitude and location of surface charges on Myxicola giant axons.

作者信息

Begenisich T

出版信息

J Gen Physiol. 1975 Jul;66(1):47-65. doi: 10.1085/jgp.66.1.47.

Abstract

The effects of changes in the concentration of calcium in solutions bathing Myxicola giant axons on the voltage dependence of sodium and potassium conductance and on the instantaneous sodium and potassium current-voltage relations have been measured. The sodium conductance-voltage relation is shifted along the voltage axis by 13 mV in the hyperpolarizing direction for a fourfold decrease in calcium concentration. The potassium conductance-voltage relation is shifted only half as much as that for sodium. There is no effect on the shape of the sodium and potassium instantaneous current-voltage curves: the normal constant-field rectification of potassium currents is maintained and the normal linear relationship of sodium currents is maintained. Considering that shifts in conductances would reflect the presence of surface charges near the gating machinery and that shape changes of instantaneous current-voltage curves would reflect the presence of surface charges near the ionic pores, these results indicate a negative surface charge density of about 1 electronic charge per 120 A2 near the sodium gating machinery, about 1 e/300 A2 for the potassium gating machinery, and much less surface charge near the sodium or potassium pores. There may be some specific binding of calcium to these surface charges with an upper limit on the binding constant of about 0.2 M-1. The differences in surface charge density suggest a spatial separation for these four membrane components.

摘要

已测量了浸泡在黏液虫巨轴突溶液中的钙浓度变化对钠和钾电导的电压依赖性以及对瞬时钠和钾电流 - 电压关系的影响。钙浓度降低四倍时,钠电导 - 电压关系沿电压轴在超极化方向上移动13 mV。钾电导 - 电压关系的移动幅度仅为钠的一半。对钠和钾瞬时电流 - 电压曲线的形状没有影响:钾电流保持正常的恒定场整流,钠电流保持正常的线性关系。考虑到电导的变化会反映门控机制附近表面电荷的存在,而瞬时电流 - 电压曲线的形状变化会反映离子孔附近表面电荷的存在,这些结果表明钠门控机制附近的表面电荷密度约为每120 Ų 1个电子电荷,钾门控机制约为每300 Ų 1个电子电荷,而钠或钾孔附近的表面电荷要少得多。钙可能与这些表面电荷存在一些特异性结合,结合常数的上限约为0.2 M⁻¹。表面电荷密度的差异表明这四种膜成分在空间上是分离的。

相似文献

1
Magnitude and location of surface charges on Myxicola giant axons.
J Gen Physiol. 1975 Jul;66(1):47-65. doi: 10.1085/jgp.66.1.47.
4
Surface charges on membranes.
J Membr Biol. 1976 Nov 22;29(3):243-53. doi: 10.1007/BF01868964.
7
Rectification in instantaneous potassium current-voltage relations in Myxicola giant axons.
J Physiol. 1971 Sep;217(3):517-31. doi: 10.1113/jphysiol.1971.sp009583.
8
Inhibition of potassium conductance with external tetraethylammonium ion in Myxicola giant axons.
Biophys J. 1980 Dec;32(3):1037-42. doi: 10.1016/S0006-3495(80)85034-X.
10
Combined voltage-clamp and dialysis of Myxicola axons: behaviour of membrane asymmetry currents.
J Physiol. 1978 May;278:309-24. doi: 10.1113/jphysiol.1978.sp012306.

引用本文的文献

1
A Single Differential Equation Description of Membrane Properties Underlying the Action Potential and the Axon Electric Field.
J Electr Bioimpedance. 2018 Dec 31;9(1):106-114. doi: 10.2478/joeb-2018-0015. eCollection 2018 Jan.
2
Pharmacology and surface electrostatics of the K channel outer pore vestibule.
J Membr Biol. 2006;212(1):51-60. doi: 10.1007/s00232-006-0039-9. Epub 2007 Jan 6.
4
Surface potentials and the calculated selectivity of ion channels.
Biophys J. 2002 Jan;82(1 Pt 1):156-9. doi: 10.1016/S0006-3495(02)75382-4.
5
The effects of external pH on calcium channel currents in bullfrog sympathetic neurons.
Biophys J. 1996 Mar;70(3):1326-34. doi: 10.1016/S0006-3495(96)79689-3.
8
Surface charge and calcium channel saturation in bullfrog sympathetic neurons.
J Gen Physiol. 1995 Apr;105(4):441-62. doi: 10.1085/jgp.105.4.441.
9
Inactivation in Myxicola giant axons responsible for slow and accumulative adaptation phenomena.
J Physiol. 1981 Mar;312:531-49. doi: 10.1113/jphysiol.1981.sp013642.
10
Adsorption of divalent cations to bilayer membranes containing phosphatidylserine.
J Gen Physiol. 1981 Apr;77(4):445-73. doi: 10.1085/jgp.77.4.445.

本文引用的文献

1
Measurement of current-voltage relations in the membrane of the giant axon of Loligo.
J Physiol. 1952 Apr;116(4):424-48. doi: 10.1113/jphysiol.1952.sp004716.
2
Liquid junction and membrane potentials of the squid giant axon.
J Gen Physiol. 1960 May;43(5):971-80. doi: 10.1085/jgp.43.5.971.
3
The action of calcium on the electrical properties of squid axons.
J Physiol. 1957 Jul 11;137(2):218-44. doi: 10.1113/jphysiol.1957.sp005808.
4
The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons.
J Physiol. 1965 Oct;180(4):821-36. doi: 10.1113/jphysiol.1965.sp007733.
5
Voltage clamp experiments on internally perfused giant axons.
J Physiol. 1965 Oct;180(4):788-820. doi: 10.1113/jphysiol.1965.sp007732.
7
Charges and potentials at the nerve surface. Divalent ions and pH.
J Gen Physiol. 1968 Feb;51(2):221-36. doi: 10.1085/jgp.51.2.221.
8
Molecular mechanisms of membrane ionic permeability changes.
Biochim Biophys Acta. 1971 Jan 5;225(1):1-10. doi: 10.1016/0005-2736(71)90277-x.
9
Current- and voltage-clamped studies on Myxicola giant axons. Effect of tetrodotoxin.
J Gen Physiol. 1969 Dec;54(6):730-40. doi: 10.1085/jgp.54.6.730.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验