Cardona-Gómez G P, Mendez P, DonCarlos L L, Azcoitia I, Garcia-Segura L M
Instituto Cajal, C.S.I.C., Avenida Doctor Arce 37, E-28002, Madrid, Spain.
Brain Res Brain Res Rev. 2001 Nov;37(1-3):320-34. doi: 10.1016/s0165-0173(01)00137-0.
Data from epidemiological studies suggest that the decline in estrogen following menopause could increase the risk of neurodegenerative diseases. Furthermore, experimental studies on different animal models have shown that estrogen is neuroprotective. The mechanisms involved in the neuroprotective effects of estrogen are still unclear. Anti-oxidant effects, activation of different membrane-associated intracellular signaling pathways, and activation of classical nuclear estrogen receptors (ERs) could contribute to neuroprotection. Interactions with neurotrophins and other growth factors may also be important for the neuroprotective effects of estradiol. In this review we focus on the interaction between insulin-like growth factor-I (IGF-I) and estrogen signaling in the brain and on the implications of this interaction for neuroprotection. During the development of the nervous system, IGF-I promotes the differentiation and survival of specific neuronal populations. In the adult brain, IGF-I is a neuromodulator, regulates synaptic plasticity, is involved in the response of neural tissue to injury and protects neurons against different neurodegenerative stimuli. As an endocrine signal, IGF-I represents a link between the growth and reproductive axes and the interaction between estradiol and IGF-I is of particular physiological relevance for the regulation of growth, sexual maturation and adult neuroendocrine function. There are several potential points of convergence between estradiol and IGF-I receptor (IGF-IR) signaling in the brain. Estrogen activates the mitogen-activated protein kinase (MAPK) pathway and has a synergistic effect with IGF-I on the activation of Akt, a kinase downstream of phosphoinositol-3 kinase. In addition, IGF-IR is necessary for the estradiol induced expression of the anti-apoptotic molecule Bcl-2 in hypothalamic neurons. The interaction of ERs and IGF-IR in the brain may depend on interactions between neural cells expressing ERs with neural cells expressing IGF-IR, or on direct interactions of the signaling pathways of alpha and beta ERs and IGF-IR in the same cell, since most neurons expressing IGF-IR also express at least one of the ER subtypes. In addition, studies on adult ovariectomized rats given intracerebroventricular (i.c.v.) infusions with antagonists for ERs or IGF-IR or with IGF-I have shown that there is a cross-regulation of the expression of ERs and IGF-IR in the brain. The interaction of estradiol and IGF-I and their receptors may be involved in different neural events. In the developing brain, ERs and IGF-IR are interdependent in the promotion of neuronal differentiation. In the adult, ERs and IGF-IR interact in the induction of synaptic plasticity. Furthermore, both in vitro and in vivo studies have shown that there is an interaction between ERs and IGF-IR in the promotion of neuronal survival and in the response of neural tissue to injury, suggesting that a parallel activation or co-activation of ERs and IGF-IR mediates neuroprotection.
流行病学研究数据表明,绝经后雌激素水平下降可能会增加神经退行性疾病的风险。此外,对不同动物模型的实验研究表明,雌激素具有神经保护作用。雌激素神经保护作用的相关机制仍不清楚。抗氧化作用、不同膜相关细胞内信号通路的激活以及经典核雌激素受体(ERs)的激活可能有助于神经保护。与神经营养因子和其他生长因子的相互作用对雌二醇的神经保护作用也可能很重要。在本综述中,我们重点关注胰岛素样生长因子-I(IGF-I)与大脑中雌激素信号之间的相互作用以及这种相互作用对神经保护的影响。在神经系统发育过程中,IGF-I促进特定神经元群体的分化和存活。在成人大脑中,IGF-I是一种神经调节剂,调节突触可塑性,参与神经组织对损伤的反应,并保护神经元免受不同神经退行性刺激。作为一种内分泌信号,IGF-I代表生长轴与生殖轴之间的联系,雌二醇与IGF-I之间的相互作用对于生长、性成熟和成年神经内分泌功能的调节具有特殊的生理意义。大脑中雌二醇和IGF-I受体(IGF-IR)信号之间存在几个潜在的交汇点。雌激素激活丝裂原活化蛋白激酶(MAPK)途径,并与IGF-I对磷酸肌醇-3激酶下游的激酶Akt的激活具有协同作用。此外,IGF-IR是下丘脑神经元中雌二醇诱导抗凋亡分子Bcl-2表达所必需的。大脑中ERs与IGF-IR的相互作用可能取决于表达ERs的神经细胞与表达IGF-IR的神经细胞之间的相互作用,或者取决于同一细胞中α和β ERs与IGF-IR信号通路的直接相互作用,因为大多数表达IGF-IR的神经元也表达至少一种ER亚型。此外,对成年去卵巢大鼠进行脑室内(i.c.v.)注射ERs或IGF-IR拮抗剂或IGF-I的研究表明,大脑中ERs和IGF-IR的表达存在交叉调节。雌二醇与IGF-I及其受体的相互作用可能参与不同的神经事件。在发育中的大脑中,ERs和IGF-IR在促进神经元分化方面相互依赖。在成体中,ERs和IGF-IR在诱导突触可塑性方面相互作用。此外,体外和体内研究均表明,ERs和IGF-IR在促进神经元存活和神经组织对损伤的反应方面存在相互作用,这表明ERs和IGF-IR的平行激活或共同激活介导了神经保护作用。