Suppr超能文献

自然聚集环境中对照试验的设计与分析:对医学信息学的启示

Design and analysis of controlled trials in naturally clustered environments: implications for medical informatics.

作者信息

Chuang Jen-Hsiang, Hripcsak George, Heitjan Daniel F

机构信息

Department of Medical Informatics, Columbia University, New York, New York 10032, USA.

出版信息

J Am Med Inform Assoc. 2002 May-Jun;9(3):230-8. doi: 10.1197/jamia.m0997.

Abstract

In medical informatics research, study questions frequently involve individuals who are grouped into clusters. For example, an intervention may be aimed at a clinician (who treats a cluster of patients) with the intention of improving the health of individual patients. Correlation among individuals within a cluster can lead to incorrect estimates of the sample size required to detect an effect and inappropriate estimates of the confidence intervals and the statistical significance of the intervention effects. Contamination, which is the spread of the effect of an intervention or control treatment to the opposite group, often occurs between individuals within clusters. It leads to an attenuation of the effect of the intervention and reduced power to detect a difference. If individuals are randomized in a clinical trial (individual-randomized trial), then correlation must be taken into account in the analysis, and the sample size may need to be increased to compensate for contamination. Randomizing clusters rather than individuals (cluster-randomized trials) can eliminate contamination and may be preferred for logistical reasons. Cluster-randomized trials are generally less efficient than individual-randomized trials, so the tradeoffs must be assessed. Correlation must be taken into account in the analysis and in the sample-size calculations for cluster-randomized trials.

摘要

在医学信息学研究中,研究问题常常涉及被分组到集群中的个体。例如,一项干预措施可能针对一名临床医生(该医生治疗一组患者),目的是改善个体患者的健康状况。集群内个体之间的相关性可能导致对检测效应所需样本量的估计错误,以及对干预效应的置信区间和统计显著性的估计不当。污染,即干预或对照治疗的效应扩散到相反的组,经常发生在集群内的个体之间。这会导致干预效应减弱,以及检测差异的能力降低。如果在临床试验中对个体进行随机分组(个体随机试验),那么在分析中必须考虑相关性,并且可能需要增加样本量以补偿污染。对集群而不是个体进行随机分组(集群随机试验)可以消除污染,并且出于后勤方面的原因可能更受青睐。集群随机试验通常比个体随机试验效率更低,因此必须评估其中的权衡。在集群随机试验的分析和样本量计算中必须考虑相关性。

相似文献

7
Sample size calculator for cluster randomized trials.整群随机试验的样本量计算器。
Comput Biol Med. 2004 Mar;34(2):113-25. doi: 10.1016/S0010-4825(03)00039-8.

引用本文的文献

2
Consequences of ignoring clustering in linear regression.忽略线性回归中的聚类的后果。
BMC Med Res Methodol. 2021 Jul 7;21(1):139. doi: 10.1186/s12874-021-01333-7.

本文引用的文献

1
Adjustments for center in multicenter studies: an overview.多中心研究中的中心调整:概述
Ann Intern Med. 2001 Jul 17;135(2):112-23. doi: 10.7326/0003-4819-135-2-200107170-00012.
5
Strategies for comparing treatments on a binary response with multi-centre data.用于利用多中心数据比较二元反应治疗方法的策略。
Stat Med. 2000 Apr 30;19(8):1115-39. doi: 10.1002/(sici)1097-0258(20000430)19:8<1115::aid-sim408>3.0.co;2-x.
8
Some controversies in planning and analysing multi-centre trials.多中心试验规划与分析中的一些争议。
Stat Med. 1998;17(15-16):1753-65; discussion 1799-800. doi: 10.1002/(sici)1097-0258(19980815/30)17:15/16<1753::aid-sim977>3.0.co;2-x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验