Suppr超能文献

利用微阵列分析区分旁系同源物:应用于Yap1p和Yap2p转录网络

Discrimination between paralogs using microarray analysis: application to the Yap1p and Yap2p transcriptional networks.

作者信息

Cohen Barak A, Pilpel Yitzhak, Mitra Robi D, Church George M

机构信息

Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Mol Biol Cell. 2002 May;13(5):1608-14. doi: 10.1091/mbc.01-10-0472.

Abstract

Ohno [Ohno, S. (1970) in Evolution by Gene Duplication, Springer, New York] proposed that gene duplication with subsequent divergence of paralogs could be a major force in the evolution of new gene functions. In practice the functional differences between closely related homologues produced by duplications can be subtle and difficult to separate experimentally. Here we show that DNA microarrays can distinguish the functions of two closely related homologues from the yeast Saccharomyces cerevisiae, Yap1p and Yap2p. Although Yap1p and Yap2p are both bZIP transcription factors involved in multiple stress responses and are 88% identical in their DNA binding domains, our work shows that these proteins activate nonoverlapping sets of genes. Yap1p controls a set of genes involved in detoxifying the effects of reactive oxygen species, whereas Yap2p controls a set of genes over represented for the function of stabilizing proteins. In addition we show that the binding sites in the promoters of the Yap1p-dependent genes differ from the sites in the promoters of Yap2p-dependent genes and we validate experimentally that these differences are important for regulation by Yap1p. We conclude that while Yap1p and Yap2p may have some overlapping functions they are clearly not redundant and, more generally, that DNA microarray analysis will be an important tool for distinguishing the functions of the large numbers of highly conserved genes found in all eukaryotic genomes.

摘要

大野干[大野干,S.(1970年),《基因重复导致的进化》,施普林格出版社,纽约]提出,基因重复以及随后旁系同源基因的分化可能是新基因功能进化的主要驱动力。实际上,由基因重复产生的密切相关同源物之间的功能差异可能很细微,难以通过实验区分。在此我们表明,DNA微阵列能够区分酿酒酵母中两个密切相关的同源物Yap1p和Yap2p的功能。尽管Yap1p和Yap2p都是参与多种应激反应的bZIP转录因子,且它们的DNA结合结构域有88%的同一性,但我们的研究表明,这些蛋白质激活的基因集并不重叠。Yap1p控制一组参与解毒活性氧作用的基因,而Yap2p控制一组在蛋白质稳定功能方面过度表达的基因。此外,我们表明Yap1p依赖基因启动子中的结合位点与Yap2p依赖基因启动子中的位点不同,并且我们通过实验验证了这些差异对于Yap1p的调控很重要。我们得出结论,虽然Yap1p和Yap2p可能有一些重叠功能,但它们显然不是冗余的,更普遍地说,DNA微阵列分析将是区分所有真核生物基因组中发现的大量高度保守基因功能的重要工具。

相似文献

3
Divergence of transcription factor binding sites across related yeast species.
Science. 2007 Aug 10;317(5839):815-9. doi: 10.1126/science.1140748.
5
Adaptation to hydrogen peroxide in Saccharomyces cerevisiae: the role of NADPH-generating systems and the SKN7 transcription factor.
Free Radic Biol Med. 2008 Mar 15;44(6):1131-45. doi: 10.1016/j.freeradbiomed.2007.12.008. Epub 2007 Dec 23.
6
Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p.
Mol Microbiol. 2005 Jul;57(1):53-69. doi: 10.1111/j.1365-2958.2005.04663.x.
8
YAP1-mediated KNQ1 expression in Kluyveromyces lactis.
FEMS Yeast Res. 2005 Feb;5(4-5):323-9. doi: 10.1016/j.femsyr.2004.11.004.
10
Molecular evolution in the yeast transcriptional regulation network.
J Exp Zool B Mol Dev Evol. 2004 Jul 15;302(4):392-411. doi: 10.1002/jez.b.20027.

引用本文的文献

1
The activity of yeast Apn2 AP endonuclease at uracil-derived AP sites is dependent on the major carbon source.
Curr Genet. 2021 Apr;67(2):283-294. doi: 10.1007/s00294-020-01141-4. Epub 2021 Jan 1.
2
Thoughts on the evolution of Core Environmental Responses in yeasts.
Fungal Biol. 2020 May;124(5):475-481. doi: 10.1016/j.funbio.2020.01.003. Epub 2020 Jan 16.
3
Yeast AP-1 like transcription factors (Yap) and stress response: a current overview.
Microb Cell. 2019 May 28;6(6):267-285. doi: 10.15698/mic2019.06.679.
6
Hormesis enables cells to handle accumulating toxic metabolites during increased energy flux.
Redox Biol. 2017 Oct;13:674-686. doi: 10.1016/j.redox.2017.08.007. Epub 2017 Aug 12.
7
How do yeast sense mitochondrial dysfunction?
Microb Cell. 2016 Sep 22;3(11):532-539. doi: 10.15698/mic2016.11.537.
8
Genome-Wide Transcriptional Response of Saccharomyces cerevisiae to Stress-Induced Perturbations.
Front Bioeng Biotechnol. 2016 Feb 18;4:17. doi: 10.3389/fbioe.2016.00017. eCollection 2016.
9
The genome-wide early temporal response of Saccharomyces cerevisiae to oxidative stress induced by cumene hydroperoxide.
PLoS One. 2013 Sep 20;8(9):e74939. doi: 10.1371/journal.pone.0074939. eCollection 2013.
10
Candidate target genes for the Saccharomyces cerevisiae transcription factor, Yap2.
Folia Microbiol (Praha). 2013 Sep;58(5):403-8. doi: 10.1007/s12223-013-0224-z. Epub 2013 Jan 19.

本文引用的文献

1
Genomic expression programs in the response of yeast cells to environmental changes.
Mol Biol Cell. 2000 Dec;11(12):4241-57. doi: 10.1091/mbc.11.12.4241.
3
Functional discovery via a compendium of expression profiles.
Cell. 2000 Jul 7;102(1):109-26. doi: 10.1016/s0092-8674(00)00015-5.
6
Exploring expression data: identification and analysis of coexpressed genes.
Genome Res. 1999 Nov;9(11):1106-15. doi: 10.1101/gr.9.11.1106.
7
Systematic determination of genetic network architecture.
Nat Genet. 1999 Jul;22(3):281-5. doi: 10.1038/10343.
9
MIPS: a database for genomes and protein sequences.
Nucleic Acids Res. 1999 Jan 1;27(1):44-8. doi: 10.1093/nar/27.1.44.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验