Suppr超能文献

酮内酯类药物泰利霉素的活性对细菌核糖体RNA的Erm单甲基化具有耐药性。

Activity of the ketolide telithromycin is refractory to Erm monomethylation of bacterial rRNA.

作者信息

Liu Mingfu, Douthwaite Stephen

机构信息

Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.

出版信息

Antimicrob Agents Chemother. 2002 Jun;46(6):1629-33. doi: 10.1128/AAC.46.6.1629-1633.2002.

Abstract

Methylation of specific nucleotides in rRNA is one of the means by which bacteria achieve resistance to macrolides-lincosamides-streptogramin B (MLS(B)) and ketolide antibiotics. The degree of resistance is determined by how effectively the rRNA is methylated. We have implemented a bacterial system in which the rRNA methylations are defined, and in this study we investigate what effect Erm mono- and dimethylation of the rRNA has on the activity of representative MLS(B) and ketolide antibiotics. In the test system, >80% of the rRNA molecules are monomethylated by ErmN (TlrD) or dimethylated by ErmE. ErmE dimethylation confers high resistance to all the MLS(B) and ketolide drugs. ErmN monomethylation predictably confers high resistance to the lincosamides clindamycin and lincomycin, intermediate resistance to the macrolides clarithromycin and erythromycin, and low resistance to the streptogramin B pristinamycin IA. In contrast to the macrolides, monomethylation only mildly affects the antimicrobial activities of the ketolides HMR 3647 (telithromycin) and HMR 3004, and these drugs remain 16 to 250 times as potent as clarithromycin and erythromycin. These differences in the macrolide and ketolide activities could explain the recent reports of variation in the MICs of telithromycin for streptococcal strains that have constitutive erm MLS(B) resistance and are highly resistant to erythromycin.

摘要

核糖体RNA(rRNA)中特定核苷酸的甲基化是细菌获得对大环内酯类-林可酰胺类-链阳菌素B(MLS(B))和酮内酯类抗生素耐药性的方式之一。耐药程度取决于rRNA甲基化的效率。我们构建了一个能明确rRNA甲基化情况的细菌系统,在本研究中,我们探究rRNA的Erm单甲基化和二甲基化对代表性MLS(B)和酮内酯类抗生素活性有何影响。在测试系统中,超过80%的rRNA分子被ErmN(TlrD)单甲基化或被ErmE二甲基化。ErmE二甲基化赋予对所有MLS(B)和酮内酯类药物的高耐药性。可以预见,ErmN单甲基化赋予对林可酰胺类药物克林霉素和林可霉素的高耐药性,对大环内酯类药物克拉霉素和红霉素的中度耐药性,以及对链阳菌素B普那霉素IA的低耐药性。与大环内酯类药物不同,单甲基化仅轻微影响酮内酯类药物HMR 3647(泰利霉素)和HMR 3004的抗菌活性,这些药物的效力仍比克拉霉素和红霉素高16至250倍。大环内酯类和酮内酯类活性的这些差异可以解释最近关于泰利霉素对具有组成型erm MLS(B)耐药性且对红霉素高度耐药的链球菌菌株的最低抑菌浓度(MIC)存在差异的报道。

相似文献

1
Activity of the ketolide telithromycin is refractory to Erm monomethylation of bacterial rRNA.
Antimicrob Agents Chemother. 2002 Jun;46(6):1629-33. doi: 10.1128/AAC.46.6.1629-1633.2002.
2
Ketolide resistance in Streptococcus pyogenes correlates with the degree of rRNA dimethylation by Erm.
Mol Microbiol. 2005 Oct;58(2):613-22. doi: 10.1111/j.1365-2958.2005.04863.x.
4
Methyltransferase Erm(37) slips on rRNA to confer atypical resistance in Mycobacterium tuberculosis.
J Biol Chem. 2005 Nov 25;280(47):38942-7. doi: 10.1074/jbc.M505727200. Epub 2005 Sep 20.
7
Ketolide antimicrobial activity persists after disruption of interactions with domain II of 23S rRNA.
Antimicrob Agents Chemother. 2004 Oct;48(10):3677-83. doi: 10.1128/AAC.48.10.3677-3683.2004.
8
In vitro activities of the novel ketolide telithromycin (HMR 3647) against erythromycin-resistant Streptococcus species.
Antimicrob Agents Chemother. 2001 Mar;45(3):789-93. doi: 10.1128/AAC.45.3.789-793.2001.
9
Induction of ribosome methylation in MLS-resistant Streptococcus pneumoniae by macrolides and ketolides.
Microb Drug Resist. 1999 Fall;5(3):183-8. doi: 10.1089/mdr.1999.5.183.
10
Drugs of the 21st century: telithromycin (HMR 3647)--the first ketolide.
J Antimicrob Chemother. 2003 Mar;51(3):497-511. doi: 10.1093/jac/dkg123.

引用本文的文献

1
Prevalence and Molecular Characteristics of Enterococci Isolated from Clinical Bovine Mastitis Cases in Ningxia.
Infect Drug Resist. 2024 May 27;17:2121-2129. doi: 10.2147/IDR.S461587. eCollection 2024.
2
Ribosome-targeting antibiotics and resistance ribosomal RNA methylation.
RSC Med Chem. 2023 Mar 1;14(4):624-643. doi: 10.1039/d2md00459c. eCollection 2023 Apr 26.
3
The ubiquitous catechol moiety elicits siderophore and angucycline production in Streptomyces.
Commun Chem. 2022 Feb 3;5(1):14. doi: 10.1038/s42004-022-00632-4.
4
Chemical biology and medicinal chemistry of RNA methyltransferases.
Nucleic Acids Res. 2022 May 6;50(8):4216-4245. doi: 10.1093/nar/gkac224.
5
Mechanisms of Resistance to Macrolide Antibiotics among .
Antibiotics (Basel). 2021 Nov 17;10(11):1406. doi: 10.3390/antibiotics10111406.
7
Structure of Erm-modified 70S ribosome reveals the mechanism of macrolide resistance.
Nat Chem Biol. 2021 Apr;17(4):412-420. doi: 10.1038/s41589-020-00715-0. Epub 2021 Jan 18.
9
Production of ammonia as a low-cost and long-distance antibiotic strategy by Streptomyces species.
ISME J. 2020 Feb;14(2):569-583. doi: 10.1038/s41396-019-0537-2. Epub 2019 Nov 7.
10
Structure of Dirithromycin Bound to the Bacterial Ribosome Suggests New Ways for Rational Improvement of Macrolides.
Antimicrob Agents Chemother. 2019 May 24;63(6). doi: 10.1128/AAC.02266-18. Print 2019 Jun.

本文引用的文献

1
Macrolide resistance.
Drug Resist Updat. 1998 Mar;1(1):29-41. doi: 10.1016/s1368-7646(98)80212-4.
4
Ketolides-telithromycin, an example of a new class of antibacterial agents.
Clin Microbiol Infect. 2000 Dec;6(12):661-9. doi: 10.1046/j.1469-0691.2000.00185.x.
5
In vitro activities of the novel ketolide telithromycin (HMR 3647) against erythromycin-resistant Streptococcus species.
Antimicrob Agents Chemother. 2001 Mar;45(3):789-93. doi: 10.1128/AAC.45.3.789-793.2001.
6
Macrolide resistance conferred by base substitutions in 23S rRNA.
Antimicrob Agents Chemother. 2001 Jan;45(1):1-12. doi: 10.1128/AAC.45.1.1-12.2001.
8
Two new mechanisms of macrolide resistance in clinical strains of Streptococcus pneumoniae from Eastern Europe and North America.
Antimicrob Agents Chemother. 2000 Dec;44(12):3395-401. doi: 10.1128/AAC.44.12.3395-3401.2000.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验