Overkamp Karin M, Bakker Barbara M, Kötter Peter, Luttik Marijke A H, Van Dijken Johannes P, Pronk Jack T
Kluyver Laboratory of Biotechnology, Delft University of Technology, NL-2628 BC Delft, Amsterdam.
Appl Environ Microbiol. 2002 Jun;68(6):2814-21. doi: 10.1128/AEM.68.6.2814-2821.2002.
Inactivation of TPI1, the Saccharomyces cerevisiae structural gene encoding triose phosphate isomerase, completely eliminates growth on glucose as the sole carbon source. In tpi1-null mutants, intracellular accumulation of dihydroxyacetone phosphate might be prevented if the cytosolic NADH generated in glycolysis by glyceraldehyde-3-phosphate dehydrogenase were quantitatively used to reduce dihydroxyacetone phosphate to glycerol. We hypothesize that the growth defect of tpi1-null mutants is caused by mitochondrial reoxidation of cytosolic NADH, thus rendering it unavailable for dihydroxyacetone-phosphate reduction. To test this hypothesis, a tpi1delta nde1delta nde2delta gut2delta quadruple mutant was constructed. NDE1 and NDE2 encode isoenzymes of mitochondrial external NADH dehydrogenase; GUT2 encodes a key enzyme of the glycerol-3-phosphate shuttle. It has recently been demonstrated that these two systems are primarily responsible for mitochondrial oxidation of cytosolic NADH in S. cerevisiae. Consistent with the hypothesis, the quadruple mutant grew on glucose as the sole carbon source. The growth on glucose, which was accompanied by glycerol production, was inhibited at high-glucose concentrations. This inhibition was attributed to glucose repression of respiratory enzymes as, in the quadruple mutant, respiratory pyruvate dissimilation is essential for ATP synthesis and growth. Serial transfer of the quadruple mutant on high-glucose media yielded a spontaneous mutant with much higher specific growth rates in high-glucose media (up to 0.10 h(-1) at 100 g of glucose. liter(-1)). In aerated batch cultures grown on 400 g of glucose. liter(-1), this engineered S. cerevisiae strain produced over 200 g of glycerol. liter(-1), corresponding to a molar yield of glycerol on glucose close to unity.
磷酸丙糖异构酶(TPI1)是酿酒酵母中编码磷酸丙糖异构酶的结构基因,该基因的失活会完全消除酵母在以葡萄糖作为唯一碳源时的生长能力。在tpi1基因缺失的突变体中,如果糖酵解过程中由甘油醛-3-磷酸脱氢酶产生的胞质NADH能够定量地用于将磷酸二羟丙酮还原为甘油,那么磷酸二羟丙酮在细胞内的积累可能会被阻止。我们推测,tpi1基因缺失突变体的生长缺陷是由胞质NADH的线粒体再氧化引起的,从而使其无法用于磷酸二羟丙酮的还原。为了验证这一假设,构建了tpi1Δnde1Δnde2Δgut2Δ四重突变体。NDE1和NDE2编码线粒体外NADH脱氢酶的同工酶;GUT2编码甘油-3-磷酸穿梭的关键酶。最近的研究表明,这两个系统主要负责酿酒酵母中胞质NADH的线粒体氧化。与该假设一致,四重突变体能够以葡萄糖作为唯一碳源生长。在高葡萄糖浓度下,伴随着甘油产生的葡萄糖生长受到抑制。这种抑制归因于呼吸酶的葡萄糖阻遏,因为在四重突变体中,呼吸性丙酮酸异化对于ATP合成和生长至关重要。在高葡萄糖培养基上对四重突变体进行连续传代培养,得到了一个自发突变体,其在高葡萄糖培养基中的比生长速率更高(在100 g/L葡萄糖时高达0.10 h⁻¹)。在以400 g/L葡萄糖进行通气分批培养时,这种工程改造的酿酒酵母菌株产生了超过200 g/L的甘油,对应于甘油对葡萄糖的摩尔产率接近1。