Suppr超能文献

Biodegradation of 1,2,3- and 1,2,4-trichlorobenzene in soil and in liquid enrichment culture.

作者信息

Marinucci A C, Bartha R

出版信息

Appl Environ Microbiol. 1979 Nov;38(5):811-7. doi: 10.1128/aem.38.5.811-817.1979.

Abstract

The biodegradation of radiochemically pure (99%) 1,2,3- and 1,2,4-trichlorobenzene (TCB) in soil was investigated. Experimental difficulties posed by the high volatility and slow biodegradation rate of the TCBs were partially overcome by using a specially designed incubation and trapping apparatus. Evolution of (14)CO(2) from active versus poisoned soil dosed with 50 mug of the individual TCBs per g gave conclusive proof that both isomers are biodegradable. At 20 degrees C, 1,2,4-TCB was mineralized at an approximate rate of 1 nmol/day per 20 g of soil sample, and 1,2,3-TCB was mineralized at one-half to one-third that rate. Mineral fertilizers or cosubstrates failed to increase TCB mineralization rates in soil. Anaerobic conditions had a negative effect on mineralization, and increased temperatures had a positive effect. With increasing 1,2,4-TCB concentrations, (14)CO(2) evolution exhibited saturation kinetics with an apparent K(m) of 55.5 nmol per g of soil. Recovery of total radioactivity was good from soil containing high organic matter concentrations. From low-organic-matter soil, some of the radioactivity was recovered only on combustion, and overall recovery was lower. In soil-inoculated liquid culture, the cosubstrates glucose and benzene caused a slight stimulation of 1,2,4-TCB mineralization. Cochromatography of known standards with the extracts of soil pretreated with [(14)C]TCBs indicated that 3,4,5-trichlorophenol, 2,6-dichlorophenol and, to a lesser degree, 2,3-dichlorophenol were present in soils incubated with 1,2,3-TCB. 2,4-, 2,5-, and 3,4-dichlorophenol were present in soils incubated with 1,2,4-TCB.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验