Jo Booil
Social Research Methodology Division, Graduate School of Education and Information Studies, University of California, Los Angeles 90095-1521, USA.
Psychol Methods. 2002 Jun;7(2):178-93. doi: 10.1037/1082-989x.7.2.178.
This study examined various factors that affect statistical power in randomized intervention studies with noncompliance. On the basis of Monte Carlo simulations, this study demonstrates how statistical power changes depending on compliance rate, study design, outcome distributions, and covariate information. It also examines how these factors influence power in different methods of estimating intervention effects. Intent-to-treat analysis and complier average causal effect estimation are compared as 2 alternative ways of estimating intervention effects under noncompliance. The results of this investigation provide practical implications in designing and evaluating intervention studies taking into account noncompliance.
本研究考察了在存在不依从情况的随机干预研究中影响统计效能的各种因素。基于蒙特卡洛模拟,本研究展示了统计效能如何根据依从率、研究设计、结果分布和协变量信息而变化。它还考察了这些因素如何在不同的干预效果估计方法中影响效能。意向性分析和依从者平均因果效应估计作为在不依从情况下估计干预效果的两种替代方法进行了比较。本调查结果为在设计和评估考虑到不依从情况的干预研究时提供了实际意义。