Levy Ilan, Shani Ziv, Shoseyov Oded
The Faculty of Agricultural, Food and Environmental Quality Sciences, The Institute of Plant Science and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.
Biomol Eng. 2002 Jun;19(1):17-30. doi: 10.1016/s1389-0344(02)00007-2.
Cellulose is one of the most abundant polymers in nature. Different living systems evolved simultaneously, using structurally similar proteins to synthesize and metabolize polysaccharides. In the growing plant, cell wall loosening, together with cellulose biosynthesis, enables turgor-driven cell expansion. It has been postulated that endo-1,4-beta-glucanases (EGases) play a central role in these complex activities. Similarly, microorganisms use a consortium of lytic enzymes to convert cellulose into soluble sugars. Most, if not all, cellulases have a modular structure with two or more separate independent functional domains. Binding to cellulose is mediated by a cellulose-binding domain (CBD), whereas the catalytic domain mediates hydrolysis. Today, EGases and CBDs are known to exist in a wide range of species and it is evident that both possess immense potential in modifying polysaccharide materials in-vivo and in-vitro. The hydrolytic function is utilized for polysaccharide degradation in microbial systems and cell wall biogenesis in plants. The CBDs exerts activity that can be utilized for effective degradation of crystalline cellulose, plant cell wall relaxation, expansion and cell wall biosynthesis. Applications range from modulating the architecture of individual cells to an entire organism. These genes, when expressed under specific promoters and appropriate trafficking signals can be used to alter the nutritional value and texture of agricultural crop and their final products. EGases and CBDs may also find applications in the modification of physical and chemical properties of composite materials to create new materials possessing improved properties.
纤维素是自然界中含量最丰富的聚合物之一。不同的生命系统同时进化,利用结构相似的蛋白质来合成和代谢多糖。在生长中的植物中,细胞壁松弛与纤维素生物合成一起,使膨压驱动的细胞扩张成为可能。据推测,内切-1,4-β-葡聚糖酶(EGases)在这些复杂活动中起核心作用。同样,微生物利用一组裂解酶将纤维素转化为可溶性糖。大多数(如果不是全部的话)纤维素酶具有模块化结构,带有两个或更多个独立的功能域。与纤维素的结合由纤维素结合域(CBD)介导,而催化域介导水解。如今,已知EGases和CBDs存在于广泛的物种中,很明显,它们在体内和体外修饰多糖材料方面都具有巨大潜力。水解功能用于微生物系统中的多糖降解和植物中的细胞壁生物合成。CBD发挥的活性可用于有效降解结晶纤维素、植物细胞壁松弛、扩张和细胞壁生物合成。应用范围从调节单个细胞的结构到整个生物体。这些基因在特定启动子和适当的转运信号下表达时,可用于改变农作物及其最终产品的营养价值和质地。EGases和CBDs也可能在复合材料的物理和化学性质改性方面找到应用,以创造具有改进性能的新材料。