Grisolia Mauricio J, Peralta Diego A, Valdez Hugo A, Barchiesi Julieta, Gomez-Casati Diego F, Busi María V
Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas (CEFOBI - CONICET), Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina.
Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martin, Chascomús, Buenos Aires, Argentina.
Plant Mol Biol. 2017 Jan;93(1-2):121-135. doi: 10.1007/s11103-016-0551-y. Epub 2016 Oct 21.
Starch binding domains of starch synthase III from Arabidopsis thaliana (SBD123) binds preferentially to cell wall polysaccharides rather than to starch in vitro. Transgenic plants overexpressing SBD123 in the cell wall are larger than wild type. Cell wall components are altered in transgenic plants. Transgenic plants are more susceptible to digestion than wild type and present higher released glucose content. Our results suggest that the transgenic plants have an advantage for the production of bioethanol in terms of saccharification of essential substrates. The plant cell wall, which represents a major source of biomass for biofuel production, is composed of cellulose, hemicelluloses, pectins and lignin. A potential biotechnological target for improving the production of biofuels is the modification of plant cell walls. This modification is achieved via several strategies, including, among others, altering biosynthetic pathways and modifying the associations and structures of various cell wall components. In this study, we modified the cell wall of A. thaliana by targeting the starch-binding domains of A. thaliana starch synthase III to this structure. The resulting transgenic plants (E8-SDB123) showed an increased biomass, higher levels of both fermentable sugars and hydrolyzed cellulose and altered cell wall properties such as higher laxity and degradability, which are valuable characteristics for the second-generation biofuels industry. The increased biomass and degradability phenotype of E8-SBD123 plants could be explained by the putative cell-wall loosening effect of the in tandem starch binding domains. Based on these results, our approach represents a promising biotechnological tool for reducing of biomass recalcitrance and therefore, the need for pretreatments.
拟南芥淀粉合酶III的淀粉结合结构域(SBD123)在体外优先结合细胞壁多糖而非淀粉。在细胞壁中过表达SBD123的转基因植物比野生型更大。转基因植物的细胞壁成分发生了改变。转基因植物比野生型更易被消化,且释放的葡萄糖含量更高。我们的结果表明,就必需底物的糖化而言,转基因植物在生物乙醇生产方面具有优势。植物细胞壁是生物燃料生产的主要生物质来源,由纤维素、半纤维素、果胶和木质素组成。改善生物燃料生产的一个潜在生物技术目标是对植物细胞壁进行修饰。这种修饰可通过多种策略实现,包括改变生物合成途径以及修饰各种细胞壁成分的缔合和结构等。在本研究中,我们通过将拟南芥淀粉合酶III的淀粉结合结构域靶向该结构来修饰拟南芥的细胞壁。所得的转基因植物(E8 - SDB123)表现出生物量增加、可发酵糖和水解纤维素水平升高,以及细胞壁特性改变,如更高的松弛度和可降解性,这些都是第二代生物燃料产业的宝贵特性。E8 - SBD123植物生物量增加和可降解性增强的表型可以通过串联淀粉结合结构域假定的细胞壁松弛作用来解释。基于这些结果,我们的方法是一种有前景的生物技术工具,可降低生物质的顽固性,从而减少预处理的需求。