Osherov Nir, May Gregory S, Albert Nathaniel D, Kontoyiannis D P
Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
Antimicrob Agents Chemother. 2002 Aug;46(8):2462-9. doi: 10.1128/AAC.46.8.2462-2469.2002.
Caspofungin inhibits the synthesis of 1, 3-beta-D-glucan, an essential cell wall target in fungi. Genetic studies in the model yeast Saccharomyces cerevisiae have shown that mutations in FKS1 and FKS2 genes result in caspofungin resistance. However, direct demonstration of the role of gene overexpression in caspofungin resistance has been lacking. We transformed wild-type S. cerevisiae with an S. cerevisiae URA3-based GAL1 cDNA library and selected transformants in glucose synthetic complete plates lacking uracil (glucose SC minus uracil plates). We then moved the transformants to galactose SC minus uracil plates containing caspofungin (1 microg/ml) and looked for caspofungin-resistant colonies. We retested the candidates (true positives were sensitive on glucose caspofungin and resistant on galactose caspofungin media, respectively). We identified 16 caspofungin-resistant candidates. Restriction analysis and hybridization confirmed that 15 of the 16 clones were identical. We sequenced one of the cDNA clones and found that it contained the cDNA for SBE2. SBE2 has been described in S. cerevisiae to encode a Golgi protein involved in the transport of cell wall components (B. Santos and M. Snyder, Mol. Biol. Cell, 11:435-452, 2000). The SBE2 cDNA plasmid conferred again galactose-dependent caspofungin resistance when transformed back into the wild-type S. cerevisiae. Finally, the SBE2 deletion mutant was hypersensitive to caspofungin. In conclusion, overexpression of Sbe2p under the regulated control of the GAL1 promoter results in caspofungin resistance in S. cerevisiae. This transport pathway may provide insight into the tolerance or lack of sensitivity to caspofungin of some pathogenic fungi.
卡泊芬净可抑制1,3-β-D-葡聚糖的合成,1,3-β-D-葡聚糖是真菌细胞壁的一个重要靶点。在模式酵母酿酒酵母中的遗传学研究表明,FKS1和FKS2基因的突变会导致对卡泊芬净产生耐药性。然而,基因过表达在卡泊芬净耐药性中作用的直接证据一直缺乏。我们用基于酿酒酵母URA3的GAL1 cDNA文库转化野生型酿酒酵母,并在缺乏尿嘧啶的葡萄糖合成完全平板(葡萄糖SC减去尿嘧啶平板)上筛选转化子。然后我们将这些转化子转移到含有卡泊芬净(1微克/毫升)的半乳糖SC减去尿嘧啶平板上,寻找对卡泊芬净耐药的菌落。我们对候选菌株进行了重新测试(真正的阳性菌株分别在葡萄糖卡泊芬净培养基上敏感,在半乳糖卡泊芬净培养基上耐药)。我们鉴定出16个对卡泊芬净耐药的候选菌株。限制性分析和杂交证实16个克隆中有15个是相同的。我们对其中一个cDNA克隆进行了测序,发现它包含SBE2的cDNA。在酿酒酵母中,SBE2已被描述为编码一种参与细胞壁成分运输的高尔基体蛋白(B. 桑托斯和M. 斯奈德,《分子生物学细胞》,11:435 - 452,2000年)。当将SBE2 cDNA质粒重新转化回野生型酿酒酵母时,它再次赋予了半乳糖依赖性的卡泊芬净耐药性。最后,SBE2缺失突变体对卡泊芬净高度敏感。总之,在GAL1启动子的调控下Sbe2p的过表达导致酿酒酵母对卡泊芬净产生耐药性。这一运输途径可能为深入了解一些致病真菌对卡泊芬净的耐受性或不敏感性提供线索。