Suppr超能文献

相似文献

1
Increases in SLT2 expression and chitin content are associated with incomplete killing of Candida glabrata by caspofungin.
Antimicrob Agents Chemother. 2008 Mar;52(3):1144-6. doi: 10.1128/AAC.01542-07. Epub 2007 Dec 17.
3
Assessment of the in vitro kinetic activity of caspofungin against Candida glabrata.
Antimicrob Agents Chemother. 2010 Jan;54(1):522-5. doi: 10.1128/AAC.01339-08. Epub 2009 Oct 19.
4
Role of the Slt2 mitogen-activated protein kinase pathway in cell wall integrity and virulence in Candida glabrata.
FEMS Yeast Res. 2010 May;10(3):343-52. doi: 10.1111/j.1567-1364.2010.00611.x. Epub 2010 Feb 3.
5
Elevated chitin content reduces the susceptibility of Candida species to caspofungin.
Antimicrob Agents Chemother. 2013 Jan;57(1):146-54. doi: 10.1128/AAC.01486-12. Epub 2012 Oct 22.
6
Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata.
PLoS Pathog. 2012;8(5):e1002718. doi: 10.1371/journal.ppat.1002718. Epub 2012 May 17.
8
Dose escalation studies with caspofungin against Candida glabrata.
J Med Microbiol. 2015 Sep;64(9):998-1007. doi: 10.1099/jmm.0.000116. Epub 2015 Jun 30.
9
Candida glabrata mutants demonstrating paradoxical reduced caspofungin susceptibility but increased micafungin susceptibility.
Antimicrob Agents Chemother. 2011 Aug;55(8):3947-9. doi: 10.1128/AAC.00044-11. Epub 2011 May 31.
10
Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection.
Antimicrob Agents Chemother. 2008 Oct;52(10):3783-5. doi: 10.1128/AAC.00473-08. Epub 2008 Aug 1.

引用本文的文献

2
Review of the novel antifungal drug olorofim (F901318).
BMC Infect Dis. 2024 Nov 7;24(1):1256. doi: 10.1186/s12879-024-10143-3.
3
RNA sequencing reveals a crucial role of Fus3-Kss1 MAPK pathway in pathogenicity.
mSphere. 2024 Nov 21;9(11):e0071524. doi: 10.1128/msphere.00715-24. Epub 2024 Oct 30.
4
Blunted blades: new CRISPR-derived technologies to dissect microbial multi-drug resistance and biofilm formation.
mSphere. 2024 Apr 23;9(4):e0064223. doi: 10.1128/msphere.00642-23. Epub 2024 Mar 21.
5
Functional genetic characterization of stress tolerance and biofilm formation in () via a novel CRISPR activation system.
mSphere. 2024 Feb 28;9(2):e0076123. doi: 10.1128/msphere.00761-23. Epub 2024 Jan 24.
6
P4-ATPase subunit Cdc50 plays a role in yeast budding and cell wall integrity in Candida glabrata.
BMC Microbiol. 2023 Apr 13;23(1):99. doi: 10.1186/s12866-023-02810-3.
7
What 'Omics can tell us about antifungal adaptation.
FEMS Yeast Res. 2022 Jan 11;21(8). doi: 10.1093/femsyr/foab070.
8
9
Critical Assessment of Cell Wall Integrity Factors Contributing to Echinocandin Tolerance and Resistance in .
Front Microbiol. 2021 Jun 30;12:702779. doi: 10.3389/fmicb.2021.702779. eCollection 2021.

本文引用的文献

1
Paradoxical effect of Echinocandins across Candida species in vitro: evidence for echinocandin-specific and candida species-related differences.
Antimicrob Agents Chemother. 2007 Jun;51(6):2257-9. doi: 10.1128/AAC.00095-07. Epub 2007 Apr 16.
2
In vivo efficacy of anidulafungin and caspofungin against Candida glabrata and association with in vitro potency in the presence of sera.
Antimicrob Agents Chemother. 2007 May;51(5):1616-20. doi: 10.1128/AAC.00105-07. Epub 2007 Feb 16.
3
The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans.
Mol Microbiol. 2007 Mar;63(5):1399-413. doi: 10.1111/j.1365-2958.2007.05588.x.
8
Comparison of the fungicidal activities of caspofungin and amphotericin B against Candida glabrata.
Antimicrob Agents Chemother. 2005 Dec;49(12):4989-92. doi: 10.1128/AAC.49.12.4989-4992.2005.
9
10
Caspofungin in combination with amphotericin B against Candida glabrata.
Antimicrob Agents Chemother. 2005 Jun;49(6):2546-9. doi: 10.1128/AAC.49.6.2546-2549.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验