Egener Tanja, Granado José, Guitton Marie-Christine, Hohe Annette, Holtorf Hauke, Lucht Jan M, Rensing Stefan A, Schlink Katja, Schulte Julia, Schween Gabriele, Zimmermann Susanne, Duwenig Elke, Rak Bodo, Reski Ralf
Plant Biotechnology, Freiburg University, Sonnenstrasse 5, D-79104 Freiburg/Br, Germany.
BMC Plant Biol. 2002 Jul 18;2:6. doi: 10.1186/1471-2229-2-6.
The moss Physcomitrella patens is an attractive model system for plant biology and functional genome analysis. It shares many biological features with higher plants but has the unique advantage of an efficient homologous recombination system for its nuclear DNA. This allows precise genetic manipulations and targeted knockouts to study gene function, an approach that due to the very low frequency of targeted recombination events is not routinely possible in any higher plant.
As an important prerequisite for a large-scale gene/function correlation study in this plant, we are establishing a collection of Physcomitrella patens transformants with insertion mutations in most expressed genes. A low-redundancy moss cDNA library was mutagenised in E. coli using a derivative of the transposon Tn1000. The resulting gene-disruption library was then used to transform Physcomitrella. Homologous recombination of the mutagenised cDNA with genomic coding sequences is expected to target insertion events preferentially to expressed genes. An immediate phenotypic analysis of transformants is made possible by the predominance of the haploid gametophytic state in the life cycle of the moss. Among the first 16,203 transformants analysed so far, we observed 2636 plants (= 16.2%) that differed from the wild-type in a variety of developmental, morphological and physiological characteristics.
The high proportion of phenotypic deviations and the wide range of abnormalities observed among the transformants suggests that mutagenesis by gene-disruption library transformation is a useful strategy to establish a highly diverse population of Physcomitrella patens mutants for functional genome analysis.
小立碗藓是植物生物学和功能基因组分析中一个具有吸引力的模式系统。它与高等植物具有许多生物学特征,但在其核DNA方面具有高效同源重组系统这一独特优势。这使得能够进行精确的基因操作和靶向敲除以研究基因功能,而在任何高等植物中,由于靶向重组事件的频率极低,这种方法通常是不可能实现的。
作为在该植物中进行大规模基因/功能相关性研究的一个重要前提条件,我们正在建立一个小立碗藓转化体库,其中大多数表达基因都存在插入突变。使用转座子Tn1000的衍生物在大肠杆菌中对一个低冗余度的藓类cDNA文库进行诱变。然后将所得的基因破坏文库用于转化小立碗藓。诱变的cDNA与基因组编码序列的同源重组预计会使插入事件优先靶向于表达基因。藓类生命周期中占主导地位的单倍体配子体状态使得能够对转化体进行即时的表型分析。在目前已分析的前16203个转化体中,我们观察到2636株植物(=16.2%)在各种发育、形态和生理特征上与野生型不同。
在转化体中观察到的高比例表型偏差和广泛的异常情况表明,通过基因破坏文库转化进行诱变是建立高度多样化的小立碗藓突变体群体用于功能基因组分析的一种有用策略。