Suppr超能文献

铜绿假单胞菌应答调节蛋白AlgR的磷酸化对于IV型菌毛介导的颤动运动至关重要。

Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type IV fimbria-mediated twitching motility.

作者信息

Whitchurch Cynthia B, Erova Tatiana E, Emery Jacqui A, Sargent Jennifer L, Harris Jonathan M, Semmler Annalese B T, Young Michael D, Mattick John S, Wozniak Daniel J

机构信息

ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia.

出版信息

J Bacteriol. 2002 Aug;184(16):4544-54. doi: 10.1128/JB.184.16.4544-4554.2002.

Abstract

The response regulator AlgR is required for both alginate biosynthesis and type IV fimbria-mediated twitching motility in Pseudomonas aeruginosa. In this study, the roles of AlgR signal transduction and phosphorylation in twitching motility and biofilm formation were examined. The predicted phosphorylation site of AlgR (aspartate 54) and a second aspartate (aspartate 85) in the receiver domain of AlgR were mutated to asparagine, and mutant algR alleles were introduced into the chromosome of P. aeruginosa strains PAK and PAO1. Assays of these mutants demonstrated that aspartate 54 but not aspartate 85 of AlgR is required for twitching motility and biofilm initiation. However, strains expressing AlgR D85N were found to be hyperfimbriate, indicating that both aspartate 54 and aspartate 85 are involved in fimbrial biogenesis and function. algD mutants were observed to have wild-type twitching motility, indicating that AlgR control of twitching motility is not mediated via its role in the control of alginate biosynthesis. In vitro phosphorylation assays showed that AlgR D54N is not phosphorylated by the enteric histidine kinase CheA. These findings indicate that phosphorylation of AlgR most likely occurs at aspartate 54 and that aspartate 54 and aspartate 85 of AlgR are required for the control of the molecular events governing fimbrial biogenesis, twitching motility, and biofilm formation in P. aeruginosa.

摘要

应答调节因子AlgR对于铜绿假单胞菌中藻酸盐生物合成和IV型菌毛介导的颤动运动都是必需的。在本研究中,检测了AlgR信号转导和磷酸化在颤动运动和生物膜形成中的作用。将AlgR预测的磷酸化位点(天冬氨酸54)和AlgR接收结构域中的第二个天冬氨酸(天冬氨酸85)突变为天冬酰胺,并将突变的algR等位基因导入铜绿假单胞菌菌株PAK和PAO1的染色体中。对这些突变体的检测表明,AlgR的天冬氨酸54而非天冬氨酸85是颤动运动和生物膜起始所必需的。然而,发现表达AlgR D85N的菌株菌毛过多,这表明天冬氨酸54和天冬氨酸85都参与菌毛的生物合成和功能。观察到algD突变体具有野生型颤动运动,这表明AlgR对颤动运动的控制不是通过其在藻酸盐生物合成控制中的作用介导的。体外磷酸化检测表明,AlgR D54N不能被肠道组氨酸激酶CheA磷酸化。这些发现表明,AlgR的磷酸化最有可能发生在天冬氨酸54,并且AlgR的天冬氨酸54和天冬氨酸85是控制铜绿假单胞菌中菌毛生物合成、颤动运动和生物膜形成的分子事件所必需的。

相似文献

3
Pseudomonas aeruginosa AlgR phosphorylation modulates rhamnolipid production and motility.
J Bacteriol. 2013 Dec;195(24):5499-515. doi: 10.1128/JB.00726-13. Epub 2013 Oct 4.
4
Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis.
J Bacteriol. 2004 Sep;186(17):5672-84. doi: 10.1128/JB.186.17.5672-5684.2004.
8
The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa.
Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9839-43. doi: 10.1073/pnas.93.18.9839.
9
The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis.
Infect Immun. 2002 Nov;70(11):6083-93. doi: 10.1128/IAI.70.11.6083-6093.2002.
10
AlgR Phosphorylation Status Differentially Regulates Pyocyanin and Pyoverdine Production.
mBio. 2018 Jan 30;9(1):e02318-17. doi: 10.1128/mBio.02318-17.

引用本文的文献

1
2
Ser/Thr protein kinase Stk1 phosphorylates the key transcriptional regulator AlgR to modulate virulence and resistance in .
Virulence. 2024 Dec;15(1):2367649. doi: 10.1080/21505594.2024.2367649. Epub 2024 Jun 20.
5
RetS Regulates Phage Infection in Pseudomonas aeruginosa via Modulating the GacS/GacA Two-Component System.
J Virol. 2022 Apr 27;96(8):e0019722. doi: 10.1128/jvi.00197-22. Epub 2022 Mar 29.
6
Global Regulatory Pathways Converge To Control Expression of Pseudomonas aeruginosa Type IV Pili.
mBio. 2022 Feb 22;13(1):e0369621. doi: 10.1128/mbio.03696-21. Epub 2022 Jan 25.
7
Impacts of Ser/Thr Protein Kinase Stk1 on the Proteome, Twitching Motility, and Competitive Advantage in .
Front Microbiol. 2021 Sep 22;12:738690. doi: 10.3389/fmicb.2021.738690. eCollection 2021.
8
Molecular Mechanisms Underlying the Regulation of Biofilm Formation and Swimming Motility by FleS/FleR in .
Front Microbiol. 2021 Jul 21;12:707711. doi: 10.3389/fmicb.2021.707711. eCollection 2021.
10
The heme-binding protein PhuS transcriptionally regulates the Pseudomonas aeruginosa tandem sRNA prrF1,F2 locus.
J Biol Chem. 2021 Jan-Jun;296:100275. doi: 10.1016/j.jbc.2021.100275. Epub 2021 Jan 9.

本文引用的文献

1
Direct observation of extension and retraction of type IV pili.
Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6901-4. doi: 10.1073/pnas.121171698. Epub 2001 May 29.
3
Pilus retraction powers bacterial twitching motility.
Nature. 2000 Sep 7;407(6800):98-102. doi: 10.1038/35024105.
4
A re-examination of twitching motility in Pseudomonas aeruginosa.
Microbiology (Reading). 1999 Oct;145 ( Pt 10):2863-73. doi: 10.1099/00221287-145-10-2863.
5
Protein modelling for all.
Trends Biochem Sci. 1999 Sep;24(9):364-7. doi: 10.1016/s0968-0004(99)01427-9.
6
Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development.
Mol Microbiol. 1998 Oct;30(2):295-304. doi: 10.1046/j.1365-2958.1998.01062.x.
8
The involvement of cell-to-cell signals in the development of a bacterial biofilm.
Science. 1998 Apr 10;280(5361):295-8. doi: 10.1126/science.280.5361.295.
9
SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling.
Electrophoresis. 1997 Dec;18(15):2714-23. doi: 10.1002/elps.1150181505.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验