Scholz D, Cai W J, Schaper W
Kerckhoff-Clinic, Department of Cardiac Surgery, Bad Nauheim, Germany.
Angiogenesis. 2001;4(4):247-57. doi: 10.1023/a:1016094004084.
The formation of collateral arteries as a process adaptive to arterial occlusion is now called 'arteriogenesis' to emphasize the difference to angiogenesis, the formation of capillaries by sprouting from pre-existent ones (W. Schaper, I. Buschmann. Cardiovasc Res 1999; 43: 835-7; I. Buschmann, W. Schaper. J Pathol 2000; 190: 338-42; D. Scholz et al. Virchows Arch 2000; 436: 257-70). The differences are that collaterals develop from pre-existing arterioles and that circulating monocytes adhere to endothelium that had been activated by the high shear stress generated by the large pressure differences between perfusion territories. Monocytes are the major producers of growth factors and of proteolytic enzymes that enable smooth muscle cells to migrate and divide. The nature of the growth factors remains uncertain. Neither FGF-1/2 nor VEGF is expressed on the transcriptional or translational level in collaterals proper and in the tissue surrounding them. Only FGF receptor 1 has a brief window of upregulation shortly after arterial occlusion. While transgenic overexpression of FGF-1 increases number and branching of arterioles, targeted disruption of FGF-1/2 does not negatively influence arteriogenesis. Cytokines that attract monocytes or prolong the life span of monocytes (MCP-1, GM CSF) are strong arteriogenic factors. Collateral vessels exhibit the same morphology whether they had formed in the heart, limbs or brain or in dogs, rabbits or mouse. They are tortuous because they also increase lengthwise in a restricted space. In animals larger than the mouse, they develop an intima, and initially, many arterioles participate in arteriogenesis, but only a few mature into large arterial channels which, when arterial occlusion had proceeded slowly enough, can replace the occluded artery to a significant proportion. Therapy with a single growth factor in animals with occluded femoral arteries significantly increases the speed of arteriogenesis but does not significantly increase the level of adaptation. It appears that the mastergene for arteriogenesis still awaits discovery.
作为一种适应动脉闭塞的过程,侧支动脉的形成现在被称为“动脉生成”,以强调其与血管生成的区别。血管生成是指从已有的毛细血管通过芽生形成新毛细血管的过程(W. 沙佩尔、I. 布施曼。《心血管研究》1999年;43: 835 - 837;I. 布施曼、W. 沙佩尔。《病理学杂志》2000年;190: 338 - 342;D. 朔尔茨等人。《魏尔啸氏Archiv》2000年;436: 257 - 270)。不同之处在于,侧支是由已有的小动脉发育而来,并且循环中的单核细胞会黏附到因灌注区域之间的大压力差产生的高剪切应力而被激活的内皮细胞上。单核细胞是生长因子和蛋白水解酶的主要产生者,这些因子和酶能使平滑肌细胞迁移和分裂。生长因子的性质仍不确定。在侧支本身及其周围组织中,FGF - 1/2和VEGF在转录或翻译水平上均未表达。只有FGF受体1在动脉闭塞后不久有一个短暂的上调窗口期。虽然FGF - 1的转基因过表达会增加小动脉的数量和分支,但FGF - 1/2的靶向破坏对动脉生成没有负面影响。吸引单核细胞或延长单核细胞寿命的细胞因子(MCP - 1、GM - CSF)是强大的动脉生成因子。无论侧支血管是在心脏、肢体、大脑中形成,还是在狗、兔子或小鼠中形成,它们都具有相同的形态。它们是迂曲的,因为它们也在有限的空间内纵向生长。在比小鼠大的动物中,它们会形成内膜,最初,许多小动脉参与动脉生成,但只有少数会成熟为大的动脉通道。当动脉闭塞进展足够缓慢时,这些通道可以在很大程度上替代闭塞的动脉。在股动脉闭塞的动物中,用单一生长因子进行治疗可显著提高动脉生成的速度,但不会显著提高适应水平。看来动脉生成的主控基因仍有待发现。