Suppr超能文献

快速移动细胞中肌动蛋白动力学的调控:定量分析

Regulation of actin dynamics in rapidly moving cells: a quantitative analysis.

作者信息

Mogilner Alex, Edelstein-Keshet Leah

机构信息

Department of Mathematics and Institute of Theoretical Dynamics, University of California, Davis, California 95616 USA.

出版信息

Biophys J. 2002 Sep;83(3):1237-58. doi: 10.1016/S0006-3495(02)73897-6.

Abstract

We develop a mathematical model that describes key details of actin dynamics in protrusion associated with cell motility. The model is based on the dendritic-nucleation hypothesis for lamellipodial protrusion in nonmuscle cells such as keratocytes. We consider a set of partial differential equations for diffusion and reactions of sequestered actin complexes, nucleation, and growth by polymerization of barbed ends of actin filaments, as well as capping and depolymerization of the filaments. The mechanical aspect of protrusion is based on an elastic polymerization ratchet mechanism. An output of the model is a relationship between the protrusion velocity and the number of filament barbed ends pushing the membrane. Significantly, this relationship has a local maximum: too many barbed ends deplete the available monomer pool, too few are insufficient to generate protrusive force, so motility is stalled at either extreme. Our results suggest that to achieve rapid motility, some tuning of parameters affecting actin dynamics must be operating in the cell.

摘要

我们开发了一个数学模型,该模型描述了与细胞运动相关的突出部位肌动蛋白动力学的关键细节。该模型基于非肌肉细胞(如角膜细胞)中片状伪足突出的树突状成核假说。我们考虑了一组偏微分方程,用于描述隔离的肌动蛋白复合物的扩散和反应、成核以及肌动蛋白丝末端的聚合生长,以及肌动蛋白丝的封端和解聚。突出的力学方面基于弹性聚合棘轮机制。该模型的一个输出结果是突出速度与推动细胞膜的肌动蛋白丝末端数量之间的关系。值得注意的是,这种关系存在一个局部最大值:过多的末端会耗尽可用的单体池,过少则不足以产生突出力,因此在任何一个极端情况下运动都会停止。我们的结果表明,为了实现快速运动,细胞中必须对影响肌动蛋白动力学的参数进行一些调整。

相似文献

1
Regulation of actin dynamics in rapidly moving cells: a quantitative analysis.
Biophys J. 2002 Sep;83(3):1237-58. doi: 10.1016/S0006-3495(02)73897-6.
2
Cell protrusion and retraction driven by fluctuations in actin polymerization: A two-dimensional model.
Cytoskeleton (Hoboken). 2017 Dec;74(12):490-503. doi: 10.1002/cm.21389. Epub 2017 Aug 21.
3
How does the antagonism between capping and anti-capping proteins affect actin network dynamics?
J Phys Condens Matter. 2011 Sep 21;23(37):374101. doi: 10.1088/0953-8984/23/37/374101. Epub 2011 Aug 23.
4
Control of actin filament treadmilling in cell motility.
Annu Rev Biophys. 2010;39:449-70. doi: 10.1146/annurev-biophys-051309-103849.
5
Regulation of actin assembly associated with protrusion and adhesion in cell migration.
Physiol Rev. 2008 Apr;88(2):489-513. doi: 10.1152/physrev.00021.2007.
7
Modeling the synergy of cofilin and Arp2/3 in lamellipodial protrusive activity.
Biophys J. 2013 Nov 5;105(9):1946-55. doi: 10.1016/j.bpj.2013.09.013.
9
Cortactin promotes cell motility by enhancing lamellipodial persistence.
Curr Biol. 2005 Jul 26;15(14):1276-85. doi: 10.1016/j.cub.2005.06.043.
10
Clamped-filament elongation model for actin-based motors.
Biophys J. 2002 Feb;82(2):605-17. doi: 10.1016/S0006-3495(02)75425-8.

引用本文的文献

1
Myosin-independent stiffness sensing by fibroblasts is regulated by the viscoelasticity of flowing actin.
Commun Mater. 2024;5. doi: 10.1038/s43246-024-00444-0. Epub 2024 Jan 15.
2
Biophysical Modeling of Actin-Mediated Structural Plasticity Reveals Mechanical Adaptation in Dendritic Spines.
eNeuro. 2024 Mar 11;11(3). doi: 10.1523/ENEURO.0497-23.2024. Print 2024 Mar.
3
Cytosolic concentrations of actin binding proteins and the implications for in vivo F-actin turnover.
J Cell Biol. 2023 Dec 4;222(12). doi: 10.1083/jcb.202306036. Epub 2023 Oct 6.
5
On the role of myosin-induced actin depolymerization during cell migration.
Mol Biol Cell. 2023 May 15;34(6):ar62. doi: 10.1091/mbc.E22-10-0494. Epub 2023 Mar 29.
7
Modeling ATP-mediated endothelial cell elongation on line patterns.
Biomech Model Mechanobiol. 2022 Oct;21(5):1531-1548. doi: 10.1007/s10237-022-01604-2. Epub 2022 Jul 28.
8
TccC3 Toxin Targets the Dynamic Population of F-Actin and Impairs Cell Cortex Integrity.
Int J Mol Sci. 2022 Jun 24;23(13):7026. doi: 10.3390/ijms23137026.

本文引用的文献

1
How nematode sperm crawl.
J Cell Sci. 2002 Jan 15;115(Pt 2):367-84. doi: 10.1242/jcs.115.2.367.
2
Distinct roles of frontal and rear cell-substrate adhesions in fibroblast migration.
Mol Biol Cell. 2001 Dec;12(12):3947-54. doi: 10.1091/mbc.12.12.3947.
3
Self-organization of a propulsive actin network as an evolutionary process.
Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11324-9. doi: 10.1073/pnas.181338798.
4
Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin.
Curr Biol. 2001 Aug 21;11(16):1300-4. doi: 10.1016/s0960-9822(01)00395-5.
5
Local photorelease of caged thymosin beta4 in locomoting keratocytes causes cell turning.
J Cell Biol. 2001 May 28;153(5):1035-48. doi: 10.1083/jcb.153.5.1035.
6
Mechanism of actin-based motility.
Science. 2001 May 25;292(5521):1502-6. doi: 10.1126/science.1059975.
8
Secrets of actin-based motility revealed by a bacterial pathogen.
Nat Rev Mol Cell Biol. 2000 Nov;1(2):110-9. doi: 10.1038/35040061.
10
Actin dynamics: assembly and disassembly of actin networks.
Curr Biol. 2000;10(24):R891-5. doi: 10.1016/s0960-9822(00)00845-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验